Problem 1. (From Translations and Point Groups to the Full Symmetry Group) Let E_2 be the 2-dimensional Euclidean group, i.e., the group of isometries in \mathbb{R}^2 under composition.

1. Let E_2^+ denote the set of rotations in E_2, i.e. the set of isometries of the form $T(x) = \text{Rot}_\theta x + b$, for $\theta \in [0, 2\pi)$ and $b \in \mathbb{R}^2$. Show that E_2^+ is a subgroup of E_2, and that it is of index 2.

 Solution. Recall that to show E_2^+ is a subgroup we need to show closure under group operations and presence of inverses. For composition, let $T_1(x) = \text{Rot}_\theta x + b$ and let $T_2(x) = \text{Rot}_\phi + c$. Then $(T_1 \circ T_2)(x) = \text{Rot}_\theta (\text{Rot}_\phi x + c) + b = \text{Rot}_{\theta + \phi} x + (\text{Rot}\theta b + c)$ which is also a rotation in E_2^+. To see that the inverses are present, note that if $\phi = -\theta$ and $c = -\text{Rot}_\theta b$ then $T_2 = T_1^{-1}$. Thus E_2^+ is a subgroup.

 To show that it has index 2, we note that the only coset of E_2^+ is $\text{Ref}_0 \cdot E_2^+$. To see that every member of E_2 is in $E_2^+ \cup \text{Ref}_0 \cdot E_2^+$, consider an element $T \in E_2$. Since rotations are already in E_2^+ it must be that $T(x) = \text{Ref}_\theta x + b$ for some θ and b. Now note that $\text{Ref}_\theta = \text{Ref}_0 \circ \text{Rot}_{-\theta}$. And so $T(x) = \text{Ref}_0 \circ T_1$ where $T_1(x) = \text{Rot}_{-\theta} x + \text{Ref} \theta b$ in $\text{Ref}_0 \cdot E_2^+$.

2. Let $\text{Isom}(F)^+ = \text{Isom}(F) \cap E_2^+$. Show that either $\text{Isom}(F)^+ = \text{Isom}(F)$ or $\text{Isom}(F)^+$ is a subgroup of $\text{Isom}(F)$ and that it is of index 2. Similarly, for a point $p \in \mathbb{R}^2$, if we define $\text{Point}(F,p)^+ = \text{Point}(F,p) \cap E_2^+$ then $\text{Point}(F,p)^+$ either equals $\text{Point}(F,p)$ or is a subgroup of $\text{Point}(F,p)$ of index 2. (Hint: these statements are have nothing to do with geometry, and
generalize to studying the intersection H^+ of arbitrary subgroups G^+, H of a group G such that $[G : G^+] = 2$.

Solution. Following the hint, we show that if $H^+ = H \cap G^+$ where $H, G^+ \leq G$ and $[G : G^+] = 2$, then $H = H^+$ or $[H : H^+] = 2$. Assume $H \neq H^+$ and let $h_0 \in H \setminus H^+$. We now show that $H \setminus H^+ = h_0 \cdot H^+$. Consider any $h \in H \setminus H^+$ and let $h^+ = h_0^{-1} h$. We show that $h^+ \in H^+$: To see this, note that since $h_0, h \in H$ we have $h^+ \in H$. But $h_0, h \notin G^+$ and so we have $h_0^{-1} h \in G^+$ since $[G : G^+] = 2$. We thus conclude that $h^+ = h_0^{-1} h \in H \cap G^+ = H^+$ and so $H \setminus H^+ = h_0 H^+$, and so $[H : H^+] = 2$.

To conclude we note that Isom$(F)^+$ is a subgroup of Isom(F) and Point$(F,p)^+$ is a subgroup of Point(F,p). Applying the result of the fist para to $H = Isom(F)$ or $H = Point(F,p)$ yields the desired result.

3. Let Rot$(F) = \{\text{Rot}_\theta : \exists b \text{ s.t. } T(x) = \text{Rot}_\theta x + b \text{ is in Isom}(F)\}$. Show that Rot$(F)$ is a cyclic group generated by Rot$_{\theta^*}$ for the smallest positive value of θ^* such that Rot$_{\theta^*} \in$ Rot(F).

Solution. We note that if Rot$_{\theta_0} \in$ Rot(F) then so is Rot$_{\theta_0 + t_\phi (mod 2\pi)}$ for every pair of integers s and t. It follows that the greatest common divisor of θ and ϕ and 2π is in Rot(F). Since the groups of rotations must be finite, it follows that Rot(F) is generated by a single element Rot$_{\theta^*}$ for some θ^* dividing 2π.

Common Errors. No one answered this question to my satisfaction. :-(. A priori there is no reason why Point$(F,p) = \text{Rot}(F)$ for some p. We proved this above, by showing that every rotational isometry (and this is also true for reflections and glide-reflections) actually fixes some point p. Then we have that the rotation by θ^* and shift by b, is actually just a rotation about the point p, and now, by the notational assumption that $p = 0$, we have that Rot$_{\theta^*} \in$ Point(F,p).

4. Prove that if p is taken to be a point of highest rotational symmetry, then

$$\text{Isom}(F)^+ = \{T_1 \circ T_2 : T_1 \in \text{Trans}(F), T_2 \in \text{Point}(F,p)^+\} \overset{\text{def}}{=} \text{Trans}(F) \circ \text{Point}(F,p)^+.$$

(For notational simplicity, you may take assume that $p = 0$.)

Solution. One direction of the containment is clear: Trans$(F) \circ \text{Point}(F,p)^+ \subseteq \text{Isom}(F)^+$. To see the other direction first we note that the point $p = 0$ of maximal rotational symmetry satisfies Rot$_{\theta^*} \in$ Point$(F,p)^+$. To see this suppose $T_0(x) = \text{Rot}_{\theta^*} x + b$ is in Isom$(F)^+$. Then note that the point $T_0(a) = a$ for $a = (I - \text{Rot}_{\theta^*})^{-1} b$ and so Point(F,a) includes a rotation by angle θ^*. We conclude that a rotation by θ^* is included in the point group at the point of maximal rotational symmetry. Now consider any isometry $T(x) = \text{Rot}_{\theta^*} x + b$ in Isom$(F)^+$. We must have Rot$_{\theta} = \text{Rot}_{\theta_i}$ for some i and so Rot$_{\theta} \in$ Point$(F,p)^+$. Now (Rot$_{\theta_i}^{-1} \circ T)(x) = x +$ Rot$_{\theta_i}^{-1} \in \text{Trans}(F)$ and so we have $T \in \text{Trans}(F) \circ \text{Point}(F,p)^+$.

Common Errors. No one answered this question to my satisfaction. :-(. A priori there is no reason why Point$(F,p) = \text{Rot}(F)$ for some p. We proved this above, by showing that every rotational isometry (and this is also true for reflections and glide-reflections) actually fixes some point p. Then we have that the rotation by θ^* and shift by b, is actually just a rotation about the point p, and now, by the notational assumption that $p = 0$, we have that Rot$_{\theta^*} \in$ Point(F,p).

5. Deduce that if p is a point of highest rotational symmetry, then one of the following cases must hold:

(a) Isom(F) does not contain a reflection or glide-reflection, and Isom$(F) = \text{Trans}(F) \circ \text{Point}(F,p)$.
(b) \(\text{Point}(F,p)\) contains a reflection, and \(\text{Isom}(F) = \text{Trans}(F) \circ \text{Point}(F,p)\).

(c) \(\text{Isom}(F)\) contains a reflection or glide-reflection \(R\), \(\text{Point}(F,p)\) does not contain a reflection, and \(\text{Isom}(F) = (\text{Trans}(F) \circ \text{Point}(F,p)) \cup (\text{Trans}(F) \circ \text{Point}(F,p) \circ R)\).

In particular, we can obtain generators for \(\text{Isom}(F)\) by taking generators for \(\text{Point}(F,p)\) (at most 2 needed), generators for \(\text{Trans}(F)\) (exactly 2 needed), and possibly an additional reflection \(R\).

Solution. Note that if \(\text{Isom}(F)\) does not contain a reflection, then \(\text{Isom}(F) = \text{Isom}(F)^+ = \text{Trans}(F) \circ \text{Point}(F,p)^+ \circ \text{Point}(F,p)\), so case (a) is equivalent to asserting “\(\text{Isom}(F)\) does not contain a reflection”. Similarly, case (b) is equivalent to asserting \(\text{Point}(F,p)\) contains a reflection or glide reflection, but \(\text{Point}(F,p)\) does not. Letting this reflection be \(R\) we have \(\text{Isom}(F) = \text{Isom}(F)^+ \cup \text{Isom}(F)^+ \circ R\) (since \([\text{Isom}(F) : \text{Isom}(F)^+] = 2\)). By Part (4) we thus have \(\text{Isom}(F) = (\text{Trans}(F) \circ \text{Point}(F,p)) \cup (\text{Trans}(F) \circ \text{Point}(F,p) \circ R)\).

Problem 2. (Characteristic and Order of Finite Fields \([AM106]\))

1. Show that if \(R\) is an integral domain of nonzero characteristic \(p\), then every nonzero element of \(R\) has additive order \(p\).

 Solution. For positive integer \(n\) and \(r \in R\) let \(n \cdot r\) denote \(r + r + \cdots + r\) \((n\ times)\). We have \(p \cdot 1 = 0\) and \(p\) is the smallest positive integer such that this happens. Then for every \(r \in R\) we have \(p \cdot r = p \cdot 1 \cdot r = 0 \cdot r = 0\). Now suppose \(q \cdot r = 0\) for some \(0 < q < p\) and \(r \neq 0\) then we have \(q \cdot 1 \cdot r = 0\) and since \(r \neq 0\) it must be that \(q \cdot 1 = 0\) (using the fact that \(R\) is an integral domain) contradicting the minimality of \(p\).

2. Use the classification of finite abelian groups to show that if \(F\) is a finite field of characteristic \(p\), then the order (i.e. size) of \(F\) is \(p^n\) for some \(n \in \mathbb{N}\).

 Solution. Let the additive group of \(F\) be isomorphic to \(\mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_k^{n_k}}\). Then cardinality of \(F\) is \(\prod_{i=1}^k p_i^{n_i}\). If \([F]\) is not a prime power then there exist at least two distinct primes among \(p_1, \ldots, p_k\), so say \(p_1 \neq p_2\). But then \(\mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_k^{n_k}}\) must have elements of order \(p_1\) as well as \(p_2\) contradicting the conclusion from the first part of this question that every non-zero element in an integral domain has the same order. We conclude that all the \(p_i\)'s are equal and say equal to \(p\). Since some element has order \(p\), we conclude from Part 1 that every element has order \(p\) and so the characteristic of the field is \(p\).

Problem 3. (Adjoining Square Roots) Which of the following rings are integral domains? Justify your answers.

1. \([AM106-A]\) \(\mathbb{Z}_{15}[\sqrt{2}]\). (Elements are of the form \((a + b\sqrt{2})\) with \(a, b \in \mathbb{Z}_{15}\), addition defined by \((a + b\sqrt{2}) + (c + d\sqrt{2}) = ((a + c) \mod 15) + ((b + d) \mod 15)\sqrt{2}\), and multiplication defined by \((a + b\sqrt{2})(c + d\sqrt{2}) = ((ac + 2bd) \mod 15) + ((ad + bc) \mod 15)\sqrt{2}\).)

 Solution. This is not a field. \(3, 5 \in \mathbb{Z}_{15}[\sqrt{2}]\) are non-zero elements whose product is \(0\).
2. [AM106-A] \(\mathbb{Z}_{11}[\sqrt{2}] \). (Defined similarly to previous item.)

Solution. This is a field. See Part (4) for an explanation.

3. [AM106-A] \(\mathbb{Z}_7[\sqrt{2}] \). (Defined similarly to previous item.)

Solution. This is not a field. \(3 + \sqrt{2} \) and \(3 - \sqrt{2} \) are non-zero elements whose product is \(9 - 2 = 0 \mod 7 \).

4. [AM206-A] Characterize when \(\mathbb{Z}_n[\sqrt{k}] \) is a field for arbitrary positive integers \(n \) and \(k \). Your characterization should take the form of “\(\mathbb{Z}_n[\sqrt{k}] \) is a field if and only if \(n \) has Property X and the equation ‘\(\cdots = \cdots \)’ (in one variable \(x \)) has no solution in \(\mathbb{Z}_n \).”

Solution. \(\mathbb{Z}_n[\sqrt{k}] \) is a field \(\iff \) \(n \) is prime and \(x^2 = k \) has no solutions in \(\mathbb{Z}_n \).

\(\Rightarrow \) If \(n = pq \), then \(p, q \in \mathbb{Z}_n[\sqrt{k}] \) satisfy \(p, q \neq 0 \) and \(pq = 0 \) and so \(\mathbb{Z}_n \) is not an integral domain. If \(n \) is a prime but \(a^2 = k \) for some \(a \in \mathbb{Z}_n \), then we have \(a + \sqrt{k}, a - \sqrt{k} \neq 0 \) (syntactically) but their product \(a^2 - k = 0 \). So again this is not an integral domain.

\(\Leftarrow \) Suppose \(n \) is a prime and \(x^2 = k \) has no solutions in \(\mathbb{Z}_n \). Then we claim \(\mathbb{Z}_n[\sqrt{k}] \) is an integral domain, and since it is finite, it is a field. To verify the claim, suppose \(a + b\sqrt{k}, c + d\sqrt{k} \neq 0 \) but (for contradiction) suppose their product is 0. Then we have \(ac + kbd = 0 \) and \(ad + bc = 0 \).

We divide the analysis into two cases. First, if \(a = 0 \) then we need to have \(bc = 0 \) and \(kbd = 0 \). Since \(k \neq 0 \) this implies \(bc = bd = 0 \) which can happen only if \(b = 0 \) (in which case \(a + b\sqrt{k} = 0 \)) or \(c = d = 0 \) (in which case \(c + d\sqrt{k} = 0 \)) — both of which lead to contradictions. Now suppose \(a \neq 0 \). Then to have \(ad + bc = 0 \) we need \(d = -a^{-1}bc \). Further to have \(ac + kbd = 0 \) we need \(ac - kba^{-1}bc = 0 \). If \(c = 0 \) then \(d = -a^{-1}bc = 0 \) and so \(c + d\sqrt{k} = 0 \) which contradicts our assumption. So \(c \neq 0 \) and if so we must have \(a = ka^{-1}b^2 = 0 \) which implies \(k = (ab^{-1})^2 \) violating the assumption that \(x^2 - k = 0 \) has not solutions in \(\mathbb{Z}_n \).