1 Divisibility

- Reading: Terras, Chapter 1.5 - 1.8.

- Thm 0.1 ("Division Algorithm"): For $a, b \in \mathbb{Z}$ with $b > 0$, there exist unique integers q and r with $0 \leq r < b$ such that $a = qb + r$.

 Proof:

- **Algorithmic Note:** Despite its name, the theorem statement does not provide an "algorithm." Even though it tells us that q and r exist, it does not tell us how to compute them given a and b. However, in the proof, there is an implicit, but inefficient, algorithm. What is it?

- **Def:** We say that integer b **divides** integer a (written $b|a$) if $a = qb$ for some integer q.
 - Q: Which integers divide all integers?
 - Q: Which integers are divisible by all integers?

- **Def:** For two integers that are not both zero, their **greatest common divisor** $\gcd(a, b)$ is the largest integer d such that $d|a$ and $d|b$. If $\gcd(a, b) = 1$, we say that a and b are **relatively prime**.

- **Thm 0.2 (GCD is a Linear Combination):** For two integers a, b not both zero, $\gcd(a, b) = as + bt$ for some integers s, t. Moreover, $\gcd(a, b)$ is the smallest positive integer of this form.

 Example: $\gcd(10, 24) =$

 Proof:

- **Algorithmic Note:** Like with the Division Algorithm, the statement of Thm 0.2 does not tell us how to compute the integers s and t, but there is an algorithm implicit in the proof.
• **Corollary:** if integers \(a\) and \(b\) are relatively prime, then there exist integers \(s\) and \(t\) such that \(as + bt = 1\).

Example: \(\gcd(11, 15) =

2 Primes and Factorization

• **Def:** An integer \(n\) is *prime* if \(n \notin \{0, \pm 1\}\) and the only divisors of \(n\) are \(\pm 1\) and \(\pm n\).

 - \(\pm 2, \pm 3, \pm 5, \pm 7, \pm 11, \ldots\)

 - Unlike Gallian we allow negative numbers to be prime.

• **Euclid’s Lemma:** If \(p\) is a prime and \(a, b\) are integers such that \(p|ab\), then \(p|a\) or \(p|b\).

 Proof:

• **Fundamental Thm of Arithmetic:** Every integer \(n\) other than 0 and \(\pm 1\) can be written as the product of primes \(n = p_1p_2 \cdots p_r\). Moreover, this factorization is unique up to the order of the \(p_i\)'s and their signs. That is, if \(n = p_1p_2 \cdots p_r\) and \(n = q_1q_2 \cdots q_s\) where the \(p_i\)'s and \(q_i\)'s are primes, then \(r = s\) and there is a permutation \(\pi : \{1, \ldots, r\} \rightarrow \{1, \ldots, s\}\) such that \(p_i = \pm q_{\pi(i)}\) for all \(i\).

 Proof: