Problem 1. (Induction) Consider the following one-dimensional variant of “Game of Life”. The process starts at time 0 with one particle sitting at the origin $x = 0$. At each time step a particle at location $x = i$ splits into two particles with one placing itself at location $i + 1$ and the other at location $i - 1$. But if two particles attempt to place themselves at the same location, they annihilate and die. (See Figure below for an illustration.)

![Particle evolution for 3 steps.](image)

1. How many particles are there at time $t = 65535$? Prove your answer.
 (Hint: Play with the particles to form a hypothesis about how the evolution goes. This hypothesis might need to be strengthened to make it suitable for induction. State the hypothesis clearly, and then prove it by induction.)
 (Warning: This problem may be harder than the rest of this problem set - and if you are stuck it might be a good idea to do the other problems first and return to this at the end.)

2. (Extra credit, need not be turned in): Give a formula expressing the number of particles at time t for general t. (No need to prove your answer.)
Problem 2. (Asymptotic Notation) True or False? Briefly justify your answers in one sentence each. Your answers should go back to the definitions of $O(\cdot)$, $\Omega(\cdot)$, and $\Theta(\cdot)$. For example, the definition of $O(\cdot)$ says that $f(n) = O(g(n))$ if there exist c and n_0 such that for every $n \geq n_0$ it is the case that $f(n) \leq c \cdot g(n)$. So, if the answer is true, give the values of c and n_0 such that the statement holds; Or if the answer is false, explain why no c or n_0 would work.

1. $5n + 6 = O(n)$.
2. $n^2 = O(n^3)$.
3. $n^2 = \Omega(n^3)$.
4. $n = O(\log^2 n)$.
5. $\ln n = \Theta(\log_2 n)$.
6. $5^n = 3^{O(n)}$.

Problem 3. (GCD)

1. Consider the sequence of fractions $(4n + 1)/(6n + 1)$ for $n = 1, 2, \ldots$. That is, the sequence $5/7, 9/13, 13/19, \ldots$. Prove that all of these fractions are written in lowest terms. (Hint: GCD is a linear combination.)
2. (Extra Credit) Prove the same for the sequence $(3n + 1)/(6n + 5)$.

Problem 4. (Equivalence Relations) Which of the following are equivalence relations? If it is an equivalence relation, describe the equivalence classes. If it is not, which properties fail?

- Domain: Finite subsets of \mathbb{N}. Relation: $A \sim B$ if $|A| = |B|$.
- Domain: Functions $h: \mathbb{N} \to \mathbb{N}$. Relation: $f \sim g$ if $f(n) = O(g(n))$.
- Domain: The set of positive integers. Relation: $a \sim b$ if ab is a perfect square.
- Domain: $\mathbb{N} = \{0, 1, 2, \ldots\}$. Relation: $a \sim b$ if ab is a perfect square. (We consider 0 to be a perfect square.)

Problem 5. (Modular Exponentiation) Follow the instructions at http://madhu.seas.harvard.edu/courses/Fall2019/sage-inst.html to create an account for yourself on SAGE and get comfortable using it. Use SAGE to solve this problem and submit a copy of your notebook showing all your work. You should submit an annotated pdf version on Canvas.

- What is the largest value of $n \in \mathbb{N}$ for which you can get SAGE to calculate 3^n?
- Calculate $3^n \mod 10^6$ for each $n \in \{2^{10} = 1024, 2^{20} = 1048576, 2^{30} = 1073741824, 2^{100}, 2^{100} + 2^{30} + 2^{20} + 2^{10}\}$.
- Calculate $5^n \mod 11$ for each $n \in \{0, 1, \cdots, 25\}$ (look for a pattern!) and $n = 8^{2^{100}}$.

2