Announcements:

• 121.5: Nicole Immorlica: Econ and CS
• Sections: Polynomial time reductions, NP, etc.
• Homework 5 due today.
• Midterm 2 this Tuesday!
 • 90 minutes (70 if handwritten)
 • 2-sided cheatsheet, noncollaboratively made, plus Barak’s textbook.
 • Material through lecture 17 (Efficient Computation: P)
Where we are:

Part I: Circuits: Finite computation, quantitative study

Part II: Automata: Infinite restricted computation, quantitative study

Part III: Turing Machines: Infinite computation, qualitative study

Part IV: Efficient Computation: Infinite computation, quantitative study

Part V: Randomized computation: Extending studies to non-classical algorithms
Review of last lectures

(Poly-time)

• Reductions: $F \leq_p G \iff \exists R$ such that $\forall x \ F(x) = G(R(x))$, R polytime.

• $3\text{SAT} \leq_p \text{ISET}$

• NP: problems easy to verify.

$$F : \{0,1\}^* \rightarrow \{0,1\} \text{ is in NP iff:}$$

$$\exists V_F : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\} \ \text{s.t. } \forall x \in \{0,1\}^*, \ F(x) = 1 \iff \exists w \in \{0,1\}^* \text{ such that } V_F(x, w) = 1$$

and $V_F(x, w)$ computable in time $\text{poly}(|x|)$

• (Any problem in NP) $\leq_p \text{NANDSAT} \leq_p \text{3NAND} \leq_p \text{3SAT}$

• So 3SAT is NP-Complete!
Witness, the NP concept

Function F is in NP if \exists polytime V_F s.t. $(F(x) = 1) \iff (\exists w: V_F(x, w) = 1)$

<table>
<thead>
<tr>
<th>Function F</th>
<th>Witness w</th>
<th>Verifier V_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SAT(formula)</td>
<td>Variable values</td>
<td>Check: formula satisfied?</td>
</tr>
<tr>
<td>Longpath($G_{x,k}$)</td>
<td>Sequence of vertices</td>
<td>Check: is path, is long</td>
</tr>
<tr>
<td>COMPOSITE(x)</td>
<td>Factors p, q</td>
<td>Check: $p*q=x$</td>
</tr>
<tr>
<td>COMPOSITE(x)</td>
<td>y, z</td>
<td>Check: $\frac{yz}{x} \in \mathbb{Z}, \frac{y}{x} \notin \mathbb{Z}, \frac{z}{x} \notin \mathbb{Z}$</td>
</tr>
</tbody>
</table>

$E_{6}^{2f, t}$

\[
\begin{align*}
6 & \quad 10 \quad 21 \\
210 & \quad 10 \quad 21
\end{align*}
\]
Witness, the computer game

Figure 1: A screenshot from The Witness, featuring 2D puzzles in a 3D world.
Today:

- Some NP-complete problems...
- \(3\text{SAT} \leq_p E3\text{SAT} \leq_p EU3\text{SAT} \leq_p 1\text{-in-EU3SAT} \leq_p \text{SUBSETSUM}\)
- Weak NP-hardness: hard only for big-number inputs
- Strong NP-hardness: hard even for small-number inputs.
3SAT \leq_p E3SAT

Last time,
3NAND \leq_p 3SAT:

\[c = \text{NAND}(a, b) \]

\[\overline{a} \lor \overline{b} \lor \overline{c} \]
\[\land \]
\[c \lor a \]
\[\land \]
\[c \lor b \]

3SAT: Formulas like $(x_7 \lor \overline{x}_{17} \lor x_{29}) \land (\overline{x}_7 \lor x_{15} \lor x_{22}) \land (x_{22} \lor \overline{x}_{29})$, at most 3 variables/clause.

Warning: sometimes "3SAT" \neq E3SAT.

E3SAT: Formulas like $(x_7 \lor \overline{x}_{17} \lor x_{29}) \land (\overline{x}_7 \lor x_{15} \lor x_{22}) \land (x_{22} \lor \overline{x}_{29} \lor x_{22})$, exactly 3 variables/clause.
3SAT \leq_P E3SAT

Reduction:

\[(x_7)
\]
\[(x_7 \lor \overline{x}_{17})
\]
\[(x_7 \lor \overline{x}_{17} \lor x_{29})
\]
\[(x_7) \land (x_7 \lor \overline{x}_{17}) \land (x_7 \lor \overline{x}_{17} \lor x_{29})
\]

Add duplicate literals to fill clauses w/ ≤ 3 literals.

Proof:

(Sound, Complete)

\[(x_7) \land (x_7 \lor \overline{x}_{17}) \land (x_7 \lor \overline{x}_{17} \lor x_{29})\]

is satisfiable

\[(x_7 \lor x_7 \lor x_7) \land (x_7 \lor \overline{x}_{17} \lor x_7) \land (x_7 \lor \overline{x}_{17} \lor x_{29})\]

is satisfiable

\[(x_7 \lor \overline{x}_{17})\]

is satisfiable

\[(x_7 \lor \overline{x}_{17} \lor x_7)\]

is satisfiable with the same variable values
3SAT \leq_P \text{E3SAT} \quad \text{E3SAT} \leq_P \text{3SAT}

Reduction:

\begin{align*}
&(x_7) \\
&(x_7 \lor \lnot x_{17}) \\
&(x_7 \lor \lnot x_{17} \lor x_{29}) \\
&(x_7) \land (x_7 \lor \lnot x_{17}) \land (x_7 \lor \lnot x_{17} \lor x_{29})
\end{align*}

Proof:

(Sound, Complete)

\begin{align*}
&(x_7) \land (x_7 \lor \lnot x_{17}) \land (x_7 \lor \lnot x_{17} \lor x_{29}) \\
\text{is satisfiable}
\end{align*}

Q: Have we proved that E3SAT is NP-complete?
E3SAT \leq_P EU3SAT

3SAT: Formulas like $(x_7 \lor \overline{x}_{17} \lor x_{29}) \land (\overline{x}_7 \lor x_{15} \lor x_{22}) \land (x_{22} \lor \overline{x}_{29})$,
at most 3 variables/clause

E3SAT: Formulas like $(x_7 \lor \overline{x}_{17} \lor x_{29}) \land (\overline{x}_7 \lor x_{15} \lor x_{22}) \land (x_{22} \lor \overline{x}_{29} \lor x_{22})$,
Exactly 3 variables/clause.

EU3SAT: Formulas like $(x_7 \lor \overline{x}_{17} \lor x_{29}) \land (\overline{x}_7 \lor x_{15} \lor x_{22}) \land (x_{22} \lor \overline{x}_{29} \lor x_{23})$,
exactly 3 unique variables/clause.
E3SAT \leq_p EU3SAT

Reduction:

\[
\begin{align*}
(x_7 \lor \overline{x}_{17} \lor x_7) & \Rightarrow \ (x_7 \lor \overline{y}_7 \lor \text{temp}) \land \\
(x_7 \lor \overline{y}_7 \lor \text{temp}) & \land \\
(x_7 \lor y_7 \lor \text{temp}) & \land \\
(x_7 \lor y_7 \lor \text{temp})
\end{align*}
\]

(Wherever we have t copies of a variable in a clause, change $t-1$ of them and add $4(t-1)$ clauses.)

Proof:

(Sound, Complete)

a var.

a, \overline{a} literals

E3SAT formula with clauses like

\[
\begin{align*}
(x_7 \lor \overline{x}_{17} \lor y_7) & \land \\
(x_7 \lor \overline{y}_7 \lor \text{temp}) & \land \\
(x_7 \lor \overline{y}_7 \lor \text{temp}) & \land \\
(x_7 \lor y_7 \lor \text{temp}) & \land \\
(x_7 \lor y_7 \lor \overline{\text{temp}})
\end{align*}
\]

is satisfiable
EU3SAT \leq_P 1-in-EU3SAT

3SAT: Formulas like $(x_7 \vee \overline{x}_{17} \vee x_{29}) \land (\overline{x}_7 \vee x_{15} \vee x_{22}) \land (x_{22} \vee \overline{x}_{29})$,
at most 3 variables/clause, clause is satisfied iff *at least* one literal is true.

E3SAT: Formulas like $(x_7 \vee \overline{x}_{17} \vee x_{29}) \land (\overline{x}_7 \vee x_{15} \vee x_{22}) \land (x_{22} \vee \overline{x}_{29} \vee x_{22})$,
Exactly 3 variables/clause, clause is satisfied iff *at least* one literal is true.

EU3SAT: Formulas like $(x_7 \vee \overline{x}_{17} \vee x_{29}) \land (\overline{x}_7 \vee x_{15} \vee x_{22}) \land (x_{22} \vee \overline{x}_{29} \vee x_{23})$,
exactly 3 *unique* variables/clause, clause is satisfied iff *at least* one literal is true.

1-in-EU3SAT: Formulas like $\text{ONEOF}(x_7, \overline{x}_{17}, x_{29}) \land \text{ONEOF}(\overline{x}_7, x_{15}, x_{22}) \land \text{ONEOF}(x_{22}, \overline{x}_{29}, x_{23})$,
exactly 3 *unique* variables/clause, clause is satisfied iff *exactly* one literal is true.
The reduction proves that EU3SAT is coNP-hard.

Reduction:

- (a ∨ b ∨ c) ∧ (\overline{a} ∨ \overline{b} ∨ \overline{c})
- ONEOF(\overline{a}, w, x) ∧ ONEOF(b, y, x) ∧ ONEOF(c, \overline{w}, \overline{z})

Proof:

(Sound, Complete)

- (a ∨ b ∨ c) is satisfiable
- ONEOF(\overline{a}, w, x) ∧ ONEOF(b, y, x) ∧ ONEOF(c, \overline{w}, \overline{z})
- y is new vars. specific to this clause

The proof shows that EU3SAT is coNP-hard.
More SAT variants...

Figure 2-1: SAT notation example.
Knapsack Problem:

Given items with costs $a_0, a_1, ..., a_{k-1}$ and values $v_0, v_1, ..., v_{k-1}$, a budget b, and a target value t, choose a subset of the items with total cost at most b and value at least t.

<table>
<thead>
<tr>
<th>Appetizers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Fruit</td>
<td>2.15</td>
</tr>
<tr>
<td>French Fries</td>
<td>2.75</td>
</tr>
<tr>
<td>Side Salad</td>
<td>3.35</td>
</tr>
<tr>
<td>Hot Wings</td>
<td>3.55</td>
</tr>
<tr>
<td>Mozzarella Sticks</td>
<td>4.20</td>
</tr>
<tr>
<td>Sampler Plate</td>
<td>5.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sandwiches</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbecue</td>
<td>6.55</td>
</tr>
</tbody>
</table>
Knapsack Problem:

Given items with costs \(a_0, a_1, ..., a_{k-1} \) and values \(v_0, v_1, ..., v_{k-1} \), a budget \(b \), and a target value \(t \), choose a subset of the items with total cost at most \(b \) and value at least \(t \).

Subset Sum:

Given items with costs \(a_0, a_1, ..., a_{k-1} \) and a target value \(t \), choose a subset of the items with total cost exactly \(t \).
1-in-EU3SAT \leq_P Subset Sum

Formulas like
- $\text{ONEOF}(x_7, \overline{x}_{17}, x_{29})$ ∧
- $\text{ONEOF}(\overline{x}_7, x_{15}, x_{22})$ ∧
- $\text{ONEOF}(x_{22}, \overline{x}_{29}, x_{23})$

Given items with costs $a_0, a_1, ..., a_{k-1}$ and a target value t, choose a subset of the items with total cost exactly t.

Reduction:

1-in-EU3SAT formula
- m clauses (here $m=3$)
- n variables (here $n=7$)

\[\text{ONEOF}(x_7, \overline{x}_{17}, x_{29}) \land \text{ONEOF}(\overline{x}_7, x_{15}, x_{22}) \land \text{ONEOF}(x_{22}, \overline{x}_{29}, x_{23}) \]

Subset Sum numbers (written in base $n + 1$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>0</th>
<th>1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x_7: T</td>
<td>x_7: F</td>
<td>x_{17}: T</td>
<td>x_{17}: F</td>
<td>x_{23}: T</td>
<td>x_{23}: F</td>
</tr>
<tr>
<td>0 0 0 0 0 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 0 0 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1 0 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1 0 0 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proof of Correctness?

\[\text{Ila} \leftarrow \text{literal} \]

\[\boxed{\text{variable}} \]

\[\boxed{\text{clause}} \]

\[\boxed{\text{variable}} \]

Ila uses fuori able variable.
Weak NP-hardness

Subset sum: Given items with costs $a_0, a_1, ..., a_{k-1}$ and a target value t, choose a subset of the items with total cost exactly t.

Some numbers (costs) in reduction were exponential in n. (Poly length!)
If all inputs were polynomial in n, Subset Sum isn’t NP-hard.

“Weakly NP-hard”

“Strongly NP-hard”: NP-hard even if all numerical inputs are polynomial-sized.
Traveling Salesman:

Given a (directed or undirected) graph G, a “distance” d_e for each edge e, and a target t, is there a walk visiting all the vertices of G whose total distance is at most t?

Strongly NP-hard (NP-hard even if t and every d_e is small).

Hint: Reduce from Longpath:
Given a (directed or undirected) graph G and a target t, is there a path visiting at least t vertices? (Paths can’t revisit vertices.)
Summary of Lecture:

• $3\text{SAT} \leq_p \text{E3SAT} \leq_p \text{EU3SAT} \leq_p 1\text{-in-EU3SAT} \leq_p \text{SUBSETSUM}$
• Weak NP-hardness: hard only for big-number inputs
• Strong NP-hardness: hard even for small-number inputs.