CS 121: Lecture 5
Completeness: Computing every (finite) function

Adam Hesterberg

https://madhu.seas.harvard.edu/courses/Fall2020

Book: https://introtcs.org

How to contact us

- The whole staff (faster response): CS 121 Piazza
- Only the course heads (slower): cs121.fall2020.course.heads@gmail.com
Administrative
Every function $f: \{0,1\}^n \to \{0,1\}^m$ can be computed by basic operations.

NAND-universality is really universal!

Not every function $f: \{0,1\}^n \to \{0,1\}^m$ can be computed by, e.g., $\{\text{NOT}\}$

Not every gate is universal.

Every function f can be computed by circuit with $O(nm2^n)$ gates.
(complexity upper bound)

Aside: Syntactic Sugar

Tomorrow: Some (most!) functions require $\Omega\left(\frac{2^n}{n}\right)$ gates. (Complexity lower bound. Limitations of circuits!)
Universality

Theorem (4.12): \(\forall f: \{0,1\}^n \rightarrow \{0,1\}^m \) there is a Boolean circuit \(C \) computing \(f \).

- Suffices to consider functions \(f: \{0,1\}^n \rightarrow \{0,1\}^m \) functions \(f \).

- Arbitrary functions have truth tables. Example:

\[
\begin{array}{c|c}
 x & f(x) \\
000 & 0 \\
001 & 1 \\
010 & 0 \\
011 & 0 \\
100 & 1 \\
101 & 0 \\
110 & 0 \\
111 & 1 \\
\end{array}
\]
Universality: Proof

Let $\delta_{001}: \{0,1\}^3 \rightarrow \{0,1\}$ be defined as

$$\delta_{001}(x) = \begin{cases} 1 & \text{if } x = 001 \\ 0 & \text{otherwise} \end{cases}$$

Q: Give Boolean circuit to compute δ_{001}.

Q: Give Boolean circuit to compute $f = \delta_{001} \lor \delta_{100} \lor \delta_{111}$.

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
</tr>
</tbody>
</table>
Non-universality: Why NAND?

- Is \{NOT\} = \{NAND\}?
- Is \{EVEN_3\} = \{NAND\}?
 - \(EVEN_3: \{0,1\}^3 \rightarrow \{0,1\}\) is 1 iff an even number of inputs are 1

\(EVEN_3 - CIRC\) example straightline program:

\[
\begin{align*}
X[0], X[1], X[2] \text{ inputs} \\
T & \leftarrow EVEN_3(X[0], X[1], X[2]) \\
U & \leftarrow EVEN_3(T, X[1], X[1]) \\
\ldots \\
Y & = \text{AND}(X[0], X[1])?
\end{align*}
\]

- If I flip every input if I flip every input
- These flip. ("self-dual")
- If you flip A \rightarrow 10
Claim: For all \(k \), \(P(k) \): "every function computable w/ \(\leq k \) \(\text{EVEN}_3 \) gates is self-dual" is true.

Base: variables are self-dual

Induction: \(\text{EVEN}_3 \) (function \(\text{calc}_k \) with \(\leq k - 1 \) \(\text{EVEN}_3 \) gates) is self-dual
Exercise 1: Universality

1. Is \(\{ \text{EVEN}_3, \text{NOT} \} \) universal?

2. Is \(\{ \text{EVEN}_3, \text{AND} \} \) universal?

3. Is \(\{ \text{ODD}_3, \text{AND} \} \) universal? (Hint: instead of self-duality, prove a different invariant. What if all inputs are 0?)
Universality: Size

Theorem (4.12): \(\forall f: \{0,1\}^{n} \rightarrow \{0,1\}^{m} \) there is a Boolean circuit \(C \) computing \(f \). Moreover, \(|C| \leq O(n \cdot 2^n \cdot m) \)

Proof: Let \(f_i: \{0,1\}^{n} \rightarrow \{0,1\} \) be \(i^{th} \) bit of \(f \) (\(f_i(x) = f(x)_i \))

Computing \(f_0, ..., f_{m-1} \) \(\Rightarrow \) Computing \(f \)

\[
f(x) = \delta_0^n(x) \lor \delta_{0^{n-2}}^{10}(x) \lor ... \lor \delta_1^n(x)
\]

At most \(2^n \) copies of \(\delta_{x_i} \), each computable by circuit of \(n - 1 \) ANDs and \(\leq n \) NOTs

\(\Rightarrow \) Size \(\leq O(n \cdot 2^n) \)
“Syntactic Sugar”

Take programming language “P” and make it into “P++” by:

- Adding extra features to P++ on top of P
- Write a “transpiler” that takes P++ program and maps it to a P program that has equivalent functionality.

Example 1: C++ was initially developed by Bjarne Stroustrup who wrote the CFront compiler to compile C++ programs into C programs.
“Syntactic Sugar”

Take programming language “P” and make it into “P++” by:

• Adding extra features to P++ on top of P

• Write a “transpiler” that takes P++ program and maps it to a P program that has equivalent functionality.

Example 2: for is syntactic sugar for while. In C:

```c
for (init ; condition ; iterate)
    do_something
```

```c
init;
while (condition) {
    do_something;
    iterate;
}
```
“Syntactic Sugar”

Take programming language “P” and make it into “P++” by:

• Adding extra features to P++ on top of P
• Write a “transpiler” that takes P++ program and maps it to a P program that has equivalent functionality.

Example 2: for is syntactic sugar for while. In Python:

```
for item in sequence:
  do_something

itr = iter(sequence)
try:
  while True:
    item = itr.next()
    do_something;
except StopIteration: pass
```
“Syntactic Sugar”

Take programming language “P” and make it into “P++” by:

- Adding extra features to P++ on top of P
- Write a “transpiler” that takes P++ program and maps it to a P program that has equivalent functionality.

Example 3: Define NAND-CIRC++ to include:
- If statements (If x[0], then x[1], else x[2])
- User-defined procedures
- Variables with non Boolean values (e.g. [256])
- Arrays...

Example Corollary: For every \(n \), there is a circuit of \(O(n^{1.6}) \) gates to compute the map \(a, b \mapsto a \cdot b \) where \(a, b \) are \(n \) bit numbers.
Universality: Size (Circuit Upper Bounds)

Theorem (4.12): \(\forall f : \{0,1\}^n \rightarrow \{0,1\}^m \) there is a Boolean circuit \(C \) computing \(f \).

Moreover: \(|C| := \text{size}(C) \leq \Theta(n \cdot 2^n \cdot m) \quad \Theta(2^n \cdot m) \quad O(2^n \cdot m/n) \) (Thm 4.14)

AON-CIRC program / NAND circuit / NAND-CIRC program / NOR circuit / etc...

Section this week

Textbook
Exercise 2: Circuit Upper bounds

Theorem: For every \(f: \{0,1\}^n \rightarrow \{0,1\}^m \) there is a Boolean Circuit computing \(f \) with \(|C| = O(2^{2n}2^n) \) (or \(O(2^{2n}2^n + m) \) to specify outputs).

1. How big must \(m \) be, in terms of \(n \), for this to be better than the bound of \(O(2^n m) \)?

2. Prove the theorem. (Hint: How many functions \(\{0,1\}^n \rightarrow \{0,1\}^1 \) exist?)
Q: What’s the size of $\{ f \mid f : \{0,1\}^3 \to \{0,1\} \}$?

A: $2 \times 2 = 2^8$

Q: What’s the size of $\{ f \mid f : \{0,1\}^n \to \{0,1\} \}$?

A: 2^{2^n}

Each input has 2 choices

$\Rightarrow 2^{2^n}$

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>y_0</td>
</tr>
<tr>
<td>001</td>
<td>y_1</td>
</tr>
<tr>
<td>010</td>
<td>y_2</td>
</tr>
<tr>
<td>011</td>
<td>y_3</td>
</tr>
<tr>
<td>100</td>
<td>y_4</td>
</tr>
<tr>
<td>101</td>
<td>y_5</td>
</tr>
<tr>
<td>110</td>
<td>y_6</td>
</tr>
<tr>
<td>111</td>
<td>y_7</td>
</tr>
</tbody>
</table>
Non-Universality: Size (Circuit Lower Bounds)

Theorem II: Some functions $f: \{0,1\}^n \rightarrow \{0,1\}$ cannot be computed by circuits of size $o(2^n/n)$.

Proof: Recall that if \exists onto map $A \rightarrow B$ then $|A| \geq |B|$.
Representing programs/circuits as strings

Bounded universal circuit/program evaluator

Counting number of programs/circuits

\[\# \leq \# \]

\textbf{Efficient} Bounded universal circuit/program evaluator

\textbf{NAND-CIRC interpreter in NAND-CIRC”}

Lower bound: Some functions require \textit{exponentially-sized} circuits/programs

\[\text{SIZE}(2^n/100n) \]