Announcements:

• Midterm 1 next week:
 • Logistics announcement by Thursday
 • Prep Material: Canvas → Files → Midterm Prep
 • Likely: 2 pages of typset cheatsheet allowed. No other external refs.

• Homework 3 due Thursday

• Advanced Sections: Christina Ilvento on Differential Privacy!
Where we are:

Part I: Circuits: Finite computation, quantitative study

Part II: Automata: Infinite restricted computation, quantitative study

Part III: Turing Machines: Infinite computation, qualitative study

Part IV: Efficient Computation: Infinite computation, quantitative study

Part V: Randomized computation: Extending studies to non-classical algorithms
Today:

- Definition of Turing Machines
- A function F not computable by DFA or Circuits
- Computing F with Turing Machine
Definition of Turing Machine (TM)

- Recall: DFA = Finite state control + input on tape + move right on each step.
- In a nutshell: TM = DFA + “Write” + “Move left+right on tape”
 - (Either “Write” / “Move left+right” on its own insufficient)

- TM: Main change:
 - More Involved Transition function: \(T \) (now \(\delta \)):
 - \(\delta \): (current state, read symbol) \(\mapsto \) (new state, write symbol, direction of move/halt)
 - Explicit halting (don’t just end after reading last input bit)
 - Computes functions: output = concatenation of \(\{0,1\} \) symbols on tape.
Formal Definition

• (Barak, Definition 7.1):

• TM on \(k \) states and alphabet \(\Sigma \supseteq \{0,1,\triangleright,\phi\} \)

is given by \(\delta: [k] \times \Sigma \rightarrow [k] \times \Sigma \times \text{Action} \),

where \(\text{Action} = \{L, R, S, H\} \)

• \(L=\text{Left}, R=\text{Right}, S=\text{Stay (don't move)}, H=\text{Halt (done!!)} \)

• Operation:

• Start in state 0, Tape \(T = x_0 \ldots x_{n-1} \phi \phi \ldots \), Head \((i) \) at \(x_0 \)

• General step: current state \(q \); input symbol \(\sigma \):

 Let \(\delta(q,\sigma) = (r,\tau,X) \Rightarrow \text{Write } \tau \text{ on tape (overwriting } \sigma \text{)} \); Move to state \(r \); Move Head left \((i \leftarrow i - 1) \) if \(X = L \); right if \(X = R \); don’t move if \(X = S \).

• Repeat General step until \(X = H \)
TM Example

- Example: $k = 1; \Sigma = \{0,1,\triangleright,\phi\}; \delta(0,\sigma) = \begin{cases} (0,0,R) & \text{if } \sigma \in \{0,1\} \\ (0,\phi,H) & \text{if } \sigma \notin \{0,1\} \end{cases}$

- What does TM output on $\triangleright 101\phi \ldots$ (in future, we won’t write \triangleright or ϕ)
TM Example

• Example: $k = 1$; $\Sigma = \{0, 1, \triangleright, \phi\}$; $\delta(0, \sigma) = \begin{cases} (0, 0, R) & \text{if } \sigma \in \{0, 1\} \\ (0, \phi, H) & \text{if } \sigma \notin \{0, 1\} \end{cases}$

• What does TM output on $\triangleright 101\phi$... (in future, we won’t write \triangleright or ϕ)

• What function does TM compute.
A “hard” function

- \(f: \{0,1\}^* \rightarrow \{0,1\}, \ f(x) = 1 \iff x = 1^n \) for \(n = 2^t \) for integer \(t \)
Exercise Break 1

- $f : \{0,1\}^* \rightarrow \{0,1\}$, $f(x) = 1 \iff x = 1^n$ for $n = 2^t$ for integer t

- (30 sec) Prove that no circuit computes f

- (4 min 30 sec) Prove no DFA computes f
 - Part 1: Focus on big idea; defer calculations/parameter settings.
 - Part 2: Get your hands dirty; do calculations+parameter settings.
Main Idea: Loop many times:
 Scan string left to right
 Replace every alternate 1 by 0;
 reject if number of 1s is odd and greater than 2.
More details: Alphabet & States

Alphabet $\Sigma = \{0, 1, \triangleright, \phi, \#\}$

0. Start/Not seen any ones
1. Move Right first one
2. Move Right even # of ones
3. Move Right odd # of ones
4. Move Left
5. Clean Right and Reject
6. Clean Left and Reject
<table>
<thead>
<tr>
<th>State/Input</th>
<th>\triangleright</th>
<th>0</th>
<th>1</th>
<th>ϕ</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alphabet $\Sigma = \{0, 1, \triangleright, \phi, \#\}$

0. Start/Not seen any ones
1. Move Right first one
2. Move Right even # of ones
3. Move Right odd # of ones
4. Move Left
5. Clean Right and Reject
6. Clean Left and Reject
\(f : \{0,1\}^* \rightarrow \{0,1\}, \ f(x) = 1 \iff x = 1^n \text{ for } n = 2^t \text{ for integer } t \)

Alphabet \(\Sigma = \{0,1, \triangleright, \phi, \#\} \)

0. Start/Not seen any ones
1. Move Right first one
2. Move Right even # of ones
3. Move Right odd # of ones
4. Move Left
5. Clean Right and Reject
6. Clean Left and Reject

<table>
<thead>
<tr>
<th>State/Input</th>
<th>(\triangleright)</th>
<th>0</th>
<th>1</th>
<th>(\phi)</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercise Break 2:

Fill in rows for states 2 & 4

Keep answer ready (5 triples) to type into chat. Use D for \(\triangleright \)
Summary & Next

• Achieved today:
 • Defined TM
 • Shown it computes one function that DFA and circuits can’t

• Next Lecture:
 • More examples.
 • Towards equivalence with (all) programs