CS 121: Lecture 4
Defining Computation: Circuits

Madhu Sudan

https://madhu.seas.Harvard.edu/courses/Fall2020
Book: https://introtcs.org

The whole staff (faster response):. CS 121 Piazza
OnIy the course heads (S|OW€F): cs121.fall2020.course.heads@gmail.com

How to contact us {

mailto:cs121.fall2020.course.heads@gmail.com
https://piazza.com/class/kdux22p1mvg7ph

Reminder

 Homework 1 due Thursday!

» (S 121.5: Sasha Golovnev on “circuit lower bounds” on Thursday.

« Reminder: Sign up for active participation, Lectures 8-11.

« Other modes of participation: Sections+OH+Piazza!
TFs standing by!!

https://golovnev.org/

What

a b €N
input .’ output
FuNction

HOW

Input: a,b € N
Operations:

res « (

fori =1..#digits(a):

return res

for j =1 ..#digits(b):

res « res + 10"/ a;b;

~ormula/Algor

Program/Circul

ithm/
it/..

HOW

Input: a,b €N
Operations:
res « 0
fori =1..#digits(a):
forj =1..#digits(b):

res « res + 10"/ a;b;

return res

-ormula/AlgQrithm/

D . '~
rograng/Circuit/.

x fx)

Example: © ~

f:{0,1}"* — {0,1}" finite function 001 1

010 1

011 0

Compute f : 132 (1)
map x to f(x) using sequence of “basic operations”. 110 0
111 1

(Today's goals A
» Define "basic operations”.

» Formally define “f can be computed using the basic operations”

S -ormally define “f can be computed using < s operations” y

Basic Operations AnD.oR:

OR(a,b) =aVvb ={

NOT(a)Z_ICI,:az{

1, a=b=1
0, otherwise

O, a = b = ()
1, otherwise

{0,132 > {0,1}, NOT: {0,1} - {0,1}

ab aAb

00 0 g —
e ’— anb
10 0 b —

1

11

a -a
0 1 a — —a
1

0 ‘ Continue on Jupyter ‘

Circuit = Sequence of Basic Operations

« Two equivalent ways of thinking:
As a graph
As a “straightline” program (no loops — simple sequence of instructions).

(AON)-Circuit Computing Majority

Circuit = Sequence of Basic Operations

Two equivalent ways of thinking:
As a graph

As a “straightline” program (no loops — simple sequence of instructions).

Fxercise Break 1

 Describe circuit computing Exactly-2:{0,1}° — {0,1}:
¢ ExaCt|y-2(x0, X1, xZ) =1 = X0 + X1 + Xy = 2
 How many gates did you use?

* Food for thought/If you have extra time:

 How would you extend to circuit computing Exactly-m:{0,1}"* — {0,1} given by
Exactly-m(xg ...xp—1) =1 xg + -+ x,,-1 = M.

 How many gates would Exactly-m require? (say if m = %)

NAND Operation

00 1 a -
B)10, a=b=1 O-aAb
NAND(a,b) =a Ab = {1’ otherwise 01 -

Exercise (Part 1): Show how to compute NAND using AND, OR, NOT

Corollary: If we can compute f using combinations of NAND then we can compute
f using AND/OR/NOT

NAN

(

L

f computable by
< s NANDs

~\

NAND(a,b) = aAb = {

=

D Operation

f

L

f computable by
< 2s AND/OR/NOT

J

ab anb
00 1
0, a=b=1
1, oth] . !
otnerwilse
’ 10 1
11 0

—

Exercise (Part 2): Show how to compute (1) NOT, (2) AND , (3) OR using NAND

Corollary: If we can compute f using combinations of AND/OR/NOT then we can
compute f using NAND

f

f computable by
< 6s NANDs

\

Fxercise Break 2:

Exercise 1. Compute NOT, AND, OR using NAND
(how many gates per operation?)

Exercise 2: Compute NAND using AND, OR, NOT
(how many gates per operation?)

Food for thought:
Did you use all three gates in Exercise 27 If not what do you learn from this?

-

_

Boolean Circuits

(with AV, — gates)

| |

-

.

NAND Circuits

(with A gates)

L

-

[5

0

| |

4 N
AON-C’RC tl = AND(X[0],X[1])
— . . notx® = NOT(X[@])
straightline programs « = ano(notxo,x121)
(with AND, OR, NOT operations) vle]l = OR(tl,t2
N)
4 B
NAND-CIRC u = NAND(X[©],X[1])
—) _ v = NAND(X[@],u)
— | straightline programs w = nano(x(1],u)
(with NAND operation) Y[©] = NAND(v,w)

N /

|

Universality-1

 Have seen {AND,OR,NOT} = {NAND}
 f:{0,1}" - {0,1}™ has {AND, OR, NOT }-circuit iff it has {NAND }-circuit

« Is{NOT} = {NAND}?

. Is{AND,OR} = {NAND}Y?

. Is{AND,NOT} = {NAND)?

. Is{AND,XOR} = {NAND)? Is {AND, XOR} = {AND, OR, NOT}?

* Not immediate, but same answer!

Universality-2

Let S = {fy,.., f»} be Boolean functions, f;: {0,1}*i — {0,1}.

S-circuit is a sequence of operations where each operation is of the form z =

fi(1, -, Yx;) - where y;, ..., ¥, input or previously computed.

S is (NAND-)Universal iff there exists an S-circuit computing NAND (x, x;).

Can define {AND, OR, NOT }-Universal similarly.

e (3 S-circuit computing AND, 3 S-circuit computing OR, 3 S-circuit computing NOT)
« Sis{AND,OR,NOT}-Universal iff S is {NAND}-Universal.

 So ... abbreviate to “S is Universal”.

summary:

« "Basic operations”: {NAND} (or equivalently AON = {AND, OR, NOT}).

* "f can be computed with basic operations”: 3 NAND-circuit computing f
« Or equivalently NAND-CIRC program, or AON circuit, or AON-CIRC program.

e "f can be computed with < s basic operations”:
« 3 NAND-circuit program with < s gates computing f
* Or equivalently NAND-CIRC program with < s lines

* S is universal iff 3S-circuit computing NAND.
e Exercise: S is universal = 3¢ such that the following holds for every f

if f can be computed with < s basic operations, then f can be computed by an S-circuit with
at most cs gates.

Next Lecture

« Every function f:{0,1}" — {0,1} can be computed by basic operations.
* NAND-universality is really universal!!

« Every function f can be computed by circuit with 0(n2™)-gates.
(complexity upper bound)

« Some (most!) functions require Q(n) -gates. (Complexity lower bound.
Limits of circuits!)

	CS 121: Lecture 4�Defining Computation: Circuits
	Reminder
	What
	Slide Number 4
	Today’s goals
	Basic Operations
	Circuit = Sequence of Basic Operations
	(AON)-Circuit Computing Majority
	Slide Number 9
	Circuit = Sequence of Basic Operations
	Slide Number 11
	Exercise Break 1
	NAND Operation
	NAND Operation
	Exercise Break 2:
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Universality-1
	Universality-2
	Summary:
	Next Lecture

