Completeness:
Computing every (finite) function

Adam Hesterberg

https://madhu.seas.Harvard.edu/courses/Fall2020

Book: https://introtcs.org

How to contact us

- The whole staff (faster response): CS 121 Piazza
- Only the course heads (slower): cs121.fall2020.course.heads@gmail.com
Administrative
Outline

• Every function $f: \{0,1\}^n \rightarrow \{0,1\}^m$ can be computed by basic operations.
 • NAND-universality is really universal!
• Not every function $f: \{0,1\}^n \rightarrow \{0,1\}^m$ can be computed by, e.g., \{NOT\}
 • Not every gate is universal.
• Every function f can be computed by circuit with $O(nm2^n)$ gates.
 (complexity upper bound)
 • Aside: Syntactic Sugar
• Tomorrow: Some (most!) functions require $\Omega \left(\frac{2^n}{n} \right)$ gates. (Complexity lower bound. Limitations of circuits!)
Universality

Theorem (4.12): $\forall f: \{0,1\}^n \rightarrow \{0,1\}^m$ there is a Boolean circuit C computing f.

- Suffices to consider functions $f: \{0,1\}^n \rightarrow \{0,1\}$

- Arbitrary functions have truth tables. Example:

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
</tr>
</tbody>
</table>
Universality: Proof

Let \(\delta_{001} : \{0,1\}^3 \rightarrow \{0,1\} \) be defined as \(\delta_{001}(x) = \begin{cases} 1 & \text{if } x = 001 \\ 0 & \text{otherwise} \end{cases} \)

Q: Give Boolean circuit to compute \(\delta_{001} \).

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
</tr>
</tbody>
</table>

Q: Give Boolean circuit to compute \(f \).
Non-universality: Why NAND?

- Is \(\{ \text{NOT} \} = \{ \text{NAND} \} \)?
- Is \(\{ \text{EVEN}_3 \} = \{ \text{NAND} \} \)?
 - \(\text{EVEN}_3 : \{0,1\}^3 \rightarrow \{0,1\} \) is 1 iff an even number of inputs are 1

\(\text{EVEN}_3 - \text{CIRC} \) example straightline program:

\[
\begin{align*}
\text{X}[0], \text{X}[1], \text{X}[2] & \text{ inputs} \\
T & \leftarrow \text{EVEN}_3(\text{X}[0], \text{X}[1], \text{X}[2]) \\
U & \leftarrow \text{EVEN}_3(T, \text{X}[1], \text{X}[1]) \\
... & \\
Y & = \text{AND}(\text{X}[0], \text{X}[1])?
\end{align*}
\]
Exercise 1: Universality

1. Is \{\textit{EVEN}_3, \textit{NOT}\} universal?

2. Is \{\textit{EVEN}_3, \textit{AND}\} universal?

3. Is \{\textit{ODD}_3, \textit{AND}\} universal? (Hint: instead of self-duality, prove a different invariant. What if all inputs are 0?)
Universality: Size

Theorem (4.12): \(\forall f : \{0,1\}^n \to \{0,1\}^m \) there is a Boolean circuit \(C \) computing \(f \). Moreover, \(|C| \leq O(n \cdot 2^n \cdot m) \)

Proof: Let \(f_i : \{0,1\}^n \to \{0,1\} \) be \(i \)th bit of \(f \) \((f_i(x) = f(x)_i)\).

Computing \(f_0, \ldots, f_{m-1} \Rightarrow \) Computing \(f \)

\[
f(x) = \delta_{0n}(x) \lor \delta_{0n-210}(x) \lor \ldots \lor \delta_{1n}(x)
\]

At most \(2^n \) copies of \(\delta_{x_i} \), each computable by circuit of \(n - 1 \) ANDs and \(\leq n \) NOTs

\(\Rightarrow \) Size \(\leq O(n \cdot 2^n) \)
"Syntactic Sugar"

Take programming language “P” and make it into “P++” by:

• Adding extra features to P++ on top of P

• Write a “transpiler” that takes P++ program and maps it to a P program that has equivalent functionality.

Example 1: C++ was initially developed by Bjarne Stroustrup who wrote the CFront compiler to compile C++ programs into C programs.
“Syntactic Sugar”

Take programming language “P” and make it into “P++” by:

• Adding extra features to P++ on top of P

• Write a “transpiler” that takes P++ program and maps it to a P program that has equivalent functionality.

Example 2: for is syntactic sugar for while. In C:

```c
for (init ; condition ; iterate)  
do_something
```

```c
init;  
while (condition) {  
do_something;  
iterate;  
}
```
“Syntactic Sugar”

Take programming language “P” and make it into “P++” by:

• Adding extra features to P++ on top of P

• Write a “transpiler” that takes P++ program and maps it to a P program that has equivalent functionality.

Example 2: for is syntactic sugar for while. In Python:

```
for item in sequence:
    do_something
```

```
itr = iter(sequence)
try:
    while True:
        item = itr.next()
        do_something;
except StopIteration: pass
```
“Syntactic Sugar”

Take programming language “P” and make it into “P++” by:

• Adding extra features to P++ on top of P
• Write a “transpiler” that takes P++ program and maps it to a P program that has equivalent functionality.

Example 3: Define NAND-CIRC++ to include:
• If statements (If x[0], then x[1], else x[2])
• User-defined procedures
• Variables with non Boolean values (e.g. [256])
• Arrays...

Example Corollary: For every n, there is a circuit of $O(n^{1.6})$ gates to compute the map $a, b \mapsto a \cdot b$ where a, b are n bit numbers.
Universality: Size (Circuit Upper Bounds)

Theorem (4.12): \(\forall f: \{0,1\}^n \to \{0,1\}^m \) there is a Boolean circuit \(C \) computing \(f \).

Moreover: \(|C| := \text{size}(C) \leq \Theta(n \cdot 2^n \cdot m) \quad \Theta(2^n \cdot m) \quad O(2^n \cdot m/n) \) (Thm 4.14)
Exercise 2: Circuit Upper bounds

Theorem: For every $f: \{0,1\}^n \rightarrow \{0,1\}^m$ there is a Boolean Circuit computing f with $|C| = O(2^n 2^n)$ (or $O(2^n 2^n + m)$ to specify outputs).

1. How big must m be, in terms of n, for this to be better than the bound of $O(2^n m)$?

2. Prove the theorem. (Hint: How many functions $\{0,1\}^n \rightarrow \{0,1\}^1$ exist?)
Q: What’s the size of \(\{ f \mid f : \{0,1\}^3 \to \{0,1\} \} \)?

A: \(2 \times 2 = 2^8 \)

Q: What’s the size of \(\{ f \mid f : \{0,1\}^n \to \{0,1\} \} \)?

A: \(2^{2^n} \)
Non-Universality: Size (Circuit Lower Bounds)

Theorem II: Some functions \(f: \{0,1\}^n \to \{0,1\} \) cannot be computed by circuits of size \(o(2^n/n) \).

Proof: Recall that if \(\exists \) onto map \(A \to B \) then \(|A| \geq |B| \)
Representing programs/circuits as strings

Bounded universal circuit/program evaluator

Counting number of programs/circuits

Efficient Bounded universal circuit/program evaluator

NAND-CIRC interpreter in NAND-CIRC

Lower bound: Some functions require exponentially-sized circuits/programs