1 Format

The exam will be 90 minutes (60 minutes to solve, 30 minutes to \LaTeX) and will consist of TRUE/FALSE with no explanation, TRUE/FALSE with explanation, and open response problems. You are allowed to have a cheat sheet which you will have to submit with the exam.

2 Topics Covered

This is a list of some of the topics covered in the course. You may want to add some of them to your cheat sheet.

2.1 Math

• Functions: Know the definitions for functions, injectivity, surjectivity, bijectivity, and what these imply for the cardinality between the domain and codomain. Also know the pigeon hole principle.

• Big-O notation: Know the definitions for \(o, O, \omega, \Omega, \Theta\) and how to identify the relation between two functions.

2.2 Data Representation

• Representation Schemes: Know the definition of a representation scheme (also known as an encoding), the definition of a prefix-free encoding, and ways to make any encoding prefix-free.

2.3 Circuits

• Representation: Know the different representations of a circuit: directed graph, straight-line program, and tuple representation.

• Universality and EVAL: Know that we can compute every function with a NAND-CIRC and the implications of being able to compute the EVAL functions.

\textit{The exact implementation of the circuit that computes EVAL isn’t super important for this exam.}

• SIZE(n) and Size Hierarchy Theorem: Know the definition of \(\text{SIZE}(n)\) and result of the size hierarchy theorem.

• Comparing Languages: Know what it means to compare the power of different languages and how to do it.
2.4 Deterministic Finite Automata & Regular Expressions

- **DFAs and NFAs**: Know the definition of a DFA, how to express one in a transition table, how to understand DFAs and NFAs, how to create one for a given language.

- **Regular Expressions**: Know the definition of a regular expression, how to understand regular expressions, how to create one for a given language.

- **DFA/NFA/Regex Equivalence**: Know that Regular Expressions and DFAs (and NFAs) are equivalent: for every given DFA we have a regular expression that accepts the same language, and vice-versa; also, for every NFA we can express it as a DFA.

- **Regular languages and their limitations**: Know the definition of a regular language, know that DFA and regular expressions can’t compute.

3 Practice Problems

Disclaimer: If some topics are covered here more than others, that doesn’t mean they will be covered more or less on the midterm.

3.1 TRUE/FALSE

Write whether the following statements are true or false. No need to provide justification but you should justify it to yourself. (About 2 minutes each)

1. Let \(f(x) = \left(\frac{x}{4}\right) \) and \(g(x) = \frac{2^x}{x^4} \).

 (a) \(f = o(g) \)

 (b) \(f = O(g) \)

 (c) \(f = \Theta(g) \)

 (d) \(f = \Omega(g) \)

 (e) \(f = \omega(g) \)

2. The function \(EQUALS : \{0,1\}^{2n} \to \{0,1\} \), which takes as input \(x, x' \in \{0,1\}^{2n} \) and outputs 1 iff \(x = x' \), is in \(SIZE(10n) \).
3.2 TRUE/FALSE with justification

Write whether the following statements are true or false and provide a short justification.

(About 4 minutes each)

1. Consider two functions \(f, g \). If \(f = O(g) \) then \(f \neq \Omega(g) \).

2. The set of circuits made from NOT and OR gates universal.

3. Let \(f(x) = \binom{x}{4} \) and \(g(x) = x^4 - 2x^3 + 3x^2 + 1 \).

 (a) \(f = o(g) \)

 (b) \(f = O(g) \)

 (c) \(f = \theta(g) \)

 (d) \(f = \Omega(g) \)

 (e) \(f = \omega(g) \)

3.3 Short Answer

1. Prove or Disprove: There exists a regular expression that computes the function that returns 1 on the binary string \(x \in \{0,1\}^* \) if and only if \(x \) has strictly more 1s than 0s.
2. Create an encoding function $E : DFA_n \rightarrow \{0, 1\}^{10n^2}$ (for every sufficiently large n) where DFA_n is the set of DFAs with n states.