1 Format

The exam will be 90 minutes (60 minutes to solve, 30 minutes to \LaTeX) and will consist of TRUE/FALSE with no explanation, TRUE/FALSE with explanation, and open response problems. You are allowed to have a cheat sheet which you will have to submit with the exam.

2 Topics Covered

This is a list of some of the topics covered in the course. You may want to add some of them to your cheat sheet.

2.1 Math

- **Functions:** Know the definitions for functions, injectivity, surjectivity, bijectivity, and what these imply for the cardinality between the domain and codomain. Also know the pigeon hole principle.

- **Big-O notation:** Know the definitions for \(o, O, \omega, \Omega, \Theta \) and how to identify the relation between two functions.

2.2 Data Representation

- **Representation Schemes:** Know the definition of a representation scheme (also known as an encoding), the definition of a prefix-free encoding, and ways to make any encoding prefix-free.

2.3 Circuits

- **Representation:** Know the different representations of a circuit: directed graph, straight-line program, and tuple representation.

- **Universality and EVAL:** Know that we can compute every function with a NAND-CIRC and the implications of being able to compute the EVAL functions.

 The exact implementation of the circuit that computes EVAL isn’t super important for this exam.

- **SIZE(n) and Size Hierarchy Theorem:** Know the definition of \(SIZE(n) \) and result of the size hierarchy theorem.

- **Comparing Languages:** Know what it means to compare the power of different languages and how to do it.
2.4 Deterministic Finite Automata & Regular Expressions

- **DFAs and NFAs**: Know the definition of a DFA, how to express one in a transition table, how to understand DFAs and NFAs, how to create one for a given language.

- **Regular Expressions**: Know the definition of a regular expression, how to understand regular expressions, how to create one for a given language.

- **DFA/NFA/Regex Equivalence**: Know that Regular Expressions and DFAs (and NFAs) are equivalent: for every given DFA we have a regular expression that accepts the same language, and vice-versa; also, for every NFA we can express it as a DFA.

- **Regular languages and their limitations**: Know the definition of a regular language, know that DFA and regular expressions can’t compute

3 Practice Problems

Disclaimer: If some topics are covered here more than others, that doesn’t necessarily mean they will be covered more or less on the midterm.

3.1 TRUE/FALSE

Write whether the following statements are true or false. No need to provide justification but you should justify it to yourself.

(About 2 minutes each)

1. Let \(f(x) = (\frac{x}{4}) \) and \(g(x) = \frac{2^x}{x^4} \).

 (a) \(f = o(g) \) TRUE
 (b) \(f = O(g) \) TRUE
 (c) \(f = \Theta(g) \) FALSE
 (d) \(f = \Omega(g) \) FALSE
 (e) \(f = \omega(g) \) FALSE

2. The function \(EQUALS : \{0, 1\}^{2n} \to \{0, 1\}, \) which takes as input \(x, x' \in \{0, 1\}^n \) and outputs 1 iff \(x = x' \), is in \(SIZE(10n) \).
 TRUE

3.2 TRUE/FALSE with justification

Write whether the following statements are true or false and provide a short justification.

(About 4 minutes each)
1. Consider two functions \(f, g \). If \(f = O(g) \) then \(f \neq \Omega(g) \).

 No. Consider \(f(x) = g(x) = x \).

2. The set of circuits made from NOT and OR gates universal.

 TRUE. We can construct the \textit{NAND} gate using \textit{NOT} and \textit{OR} as shown below. Therefore the given set of gates is universal.

\[
\text{<NAND>}
\]

\[
W[0] = \text{NOT}(X[0])
\]

\[
W[1] = \text{NOT}(X[1])
\]

\[
Y[0] = \text{OR}(W[0], W[1])
\]

3. Let \(f(x) = \binom{x}{4} \) and \(g(x) = x^4 - 2x^3 + 3x^2 + 1 \).

\[
f(x) = \binom{x}{4} = \frac{x!}{(x-4)!4!} = \frac{1}{4!}(x(x-1)(x-2)(x-3))
\]

The following results then become clear.

(a) \(f = o(g) \) FALSE
(b) \(f = O(g) \) TRUE
(c) \(f = \theta(g) \) TRUE
(d) \(f = \Omega(g) \) TRUE
(e) \(f = \omega(g) \) FALSE

3.3 Short Answer

1. Prove or Disprove: There exists a regular expression that computes the function that returns 1 on the binary string \(x \in \{0, 1\}^* \) if and only if \(x \) has strictly more 1s than 0s.

Assume for contradiction that there is such a regular expression. Let \(n_0 \) be the number given by the Pumping Lemma, and let \(n > n_0 \).

It is clear that \(w = 0^n1^{n+1} \) is in our language. From the pumping lemma, we have that there are some \(x, y, z \) such that \(w = xyz \) (the concatenation of \(x, y, \) and \(z \)), and such that the following conditions hold:

1. \(|y| \geq 1\)
2. \(|xy| \leq p\)
3. \(xy^kz\) is in the language for every \(k \geq 0\).
By 2, we have that y is a string that consists only of 0s. Thus $x = 0^i$ and $y = 0^j$ for some i, j with $i + j \leq n$. By 1, we have that $j \geq 1$. Furthermore, $z = 0^{n-i-j}1^{n+1}$.

By 3, xy^kz is in the language for every $k \geq 0$, and so if we let $k = 2$, we have that $w' = xy^kz = 0^i0^{2j}1^{n-i-j}1^{n+1}$.

Altogether, we have $i + 2j + n - i - j = j + n$ 0s and $n + 1$ 1s. Since $j \geq 1$, we know that there at least as many 0s as 1s, contradicting that w' is in the language, by the definition of the function.

2. Create an encoding function $E : DFA_n \rightarrow \{0, 1\}^{10n^2}$ (for every sufficiently large n) where DFA_n is the set of DFAs with n states.

Idea: We have seen in class that a DFA can be represented as a directed graph so we can encode it as a list. We must also represent the set of accepting states which can simply do by appending a single bit to the beginning of each line of the list that marks the output of that state.

We have n nodes which can be represented by a bit string of length $\log_2(n + 1)$. Each node has two outgoing edges so each line of the list with be a triple of three numbers (i, j, k) where i, j is the edge you traverse on input 0 and i, k is the edge you traverse on input 1. Each line requires 1 additional bit to denote the output when ending at that state. Therefore it takes $n \cdot (3 \cdot \log_2(n + 1) + 1)$ which is $O(n \log_2 n)$.