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Abstract

These lecture notes are based on [BNS+16] and were compiled for a guest lecture
in the course CS229r “Information Theory in Computer Science” taught by Madhu
Sudan at Harvard University in Spring 2016.

Menu for today’s lecture:

• Motivation

• Model

• Overfitting & comparison to non-adaptive data analysis

• What can we do adaptively?

• KL Divergence recap

• Proof

• Differential privacy (time permitting)

1 Motivation

Ideally, science is non-adaptive — that is, hypotheses are formulated before the data is
collected and the hypothesis tested. In particular, a dataset should only be used once. How-
ever, in practice, datasets are used repeatedly, with previous analyses informing subsequent
analyses. This may lead to erroneous conclusions. [Har15b, DFH+15b]

Adaptive use of data has been identified as a major problem in empirical sciences. One
proposed solution is pre-registration, where scientists commit to their methodology before
examining the data. In today’s lecture we will consider a different approach. Namely, we
will consider ways of answering adaptively-chosen queries while preserving validity.
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2 Model

First we must define a formal model for this problem.

  

q1 a1 q2 a2 qk ak
...

There is an unknown population P (modelled as a distribution on a data universe X )
and an analyst A who wants to know about the population. The analyst’s queries are of the
simple form “what fraction of the population satisfies predicate q : X → {0, 1}.” To answer
his queries, the analyst collects n independent samples from P . For each query qj she wants
an answer aj ≈ qj(P) = E

z∼P
[qj(z)], and tolerates an additive error α. The samples are given

to a mechanism M which must use them to answer the queries.
Crucially, the analyst’s queries are chosen depending on the answers given by M to

previous queries. Thus the queries and the sample are not independent.

3 Cf. Non-adaptive Data Analysis

In the non-adaptive setting the analyst must specify the entire sequence of queries q1, · · · , qk
before receiving any of the answers a1, · · · , ak. Thus the queries and the samples are inde-
pendent. We can view the queries as being fixed before the samples are drawn.

By Hoeffding’s inequality, for any query q : X → {0, 1},

P
x1···n

i.i.d.∼ P
[|q(x)− q(P)| > α] = P

x1···n
i.i.d.∼ P

[∣∣∣∣∣ 1n
n∑
i=1

q(xi)− E
z∼P

[q(z)]

∣∣∣∣∣ > α

]
≤ 2 · e−2α2n.
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We refer to q(x) = 1
n

∑n
i=1 q(xi) as the empirical answer to q and qj(P) = E

z∼P
[qj(z)] as

the true or population answer to q. By a union bound, for any fixed sequence of queries
q1, · · · , qk : X → {0, 1},

P
x1···n

i.i.d.∼ P

[
k

max
j=1
|qj(x)− qj(P)| > α

]
≤ 2k · e−2α2n.

Thus, if n ≥ log(2k/β)/2α2, then P
x1···n

i.i.d.∼ P

[
maxkj=1 |qj(x)− qj(P)| > α

]
≤ β. In other words,

to answer k non-adaptive queries with accuracy α, we need n = O(log(k)/α2) samples.

3.1 What goes wrong in the adaptive setting?

If the queries q1, · · · , qk are adaptive, then we can no longer take a union bound as the
queries depend on the samples. We would have to union bound over all queries the analyst
could have asked, rather than just the queries he did ask.

We can give an easy example where giving empirical answers (aj = qj(x)) fails: Suppose
X = {1, · · · , k} and P is the uniform distribution on X . Now let

qj(`) =

{
1 j = `
0 j 6= `

and suppose the analyst is given aj = qj(x) for j = 1 · · · k. Then the analyst learns exactly
what the samples x1, · · · , xn are. Now the analyst can ask qk+1, where

qk+1(`) =

{
1 ` ∈ {x1, · · ·xn}
0 ` /∈ {x1, · · · , xn}

. (1)

Then qk+1(x) = 1, but qk+1(P) ≤ n/k. So, unless n = Ω(k), empirical answer fail to be
accurate.

What went wrong here? The analyst chose qk+1 adaptively and qk+1 overfitted her sample.
A way to view this example is as follows. Suppose an alien visited earth and met Thomas,
Madhu, and Badih. It might wonder wheter all humans are named either Thomas, Madhu,
or Badih. Testing this hypothesis on its dataset confirms that this is the case. However,
this conclusion is clearly not valid of the population as a whole. This example may seem
contrived, but the underlying idea is useful [Har15a].

So we see that adaptive and non-adaptive data analysis are different.

4 What Can We Do Adaptively?

Theorem 1 ([DFH+15a, BNS+16]). There exists a mechanismM that takes n = Õ(
√
k/α2)

samples from an unknown distribution P on X and answers k adaptively-chosen queries
q1, · · · , qk : X → {0, 1} with a1, · · · , ak ∈ [0, 1] such that

P
[

k
max
j=1
|aj − qj(P)| > α

]
≤ 1

100
,
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where the probability is over both the sample and the randomness of the mechanism.

Requiring n = Õ(
√
k/α2) samples is much worse than n = O(log(k)/α2) in the non-

adaptive setting. Surprisingly, this is inherent — in the sense that there is an almost-
matching lower bound, namely n = Ω(

√
k/α) [HU14, SU15b]. (This lower bound holds

assuming |X | ≥ 2k. Alternatively, this is a computational lower bound for mechanisms
that are not powerful enough to break cryptography with seed length log |X |. Moreover, it
is known that, when |X | ≤ 2õ(k) and the mechanism is allowed exponential time, we can
do better.) This shows an exponential separation between the adaptive and non-adaptive
settings.

5 Proof

The mechanism M in Theorem 1 is extremely simple: Given a sample x1, · · · , xn ∈ X , for
each query qj : X → {0, 1}, it returns a random answer

aj ∼ N
(
qj(x), σ2

)
, (2)

for an appropriate value of σ2.
Why? The intuition is that it is hard to overfit noisy data. The addition of noise prevents

the analyst from identifying the samples, which means she cannot overfit à la (1).

5.1 Key steps

We want to show

P
[

k
max
j=1
|aj − qj(P)| > α

]
≤ 1

100
,

where the probability is taken over the sample x1, · · · , xn ∼ P as well as the randomness of
M and A. By Markov’s inequality, it suffices to show that

E
[

k
max
j=1
|aj − qj(P)|

]
≤ α

100
.

The maximum is annoying to work with. So we simply pick out the worst query. We
define a function f which takes the entire transcript and picks out a single worst query that
maximizes |aj∗ − qj∗(P)|. Moreover, f may negate the query to ensure that a∗ − q∗(P) ≥ 0.
Formally, define f : (Q× [0, 1])k → Q× [0, 1] by

f(q1, a1, · · · , qk, ak) =

{
(qj∗ , aj∗) aj∗ − qj(P) ≥ 0

(1− qj∗ , 1− aj∗) aj∗ − qj∗(P) < 0
, where j∗ = armax

j∈{1,··· ,k}
|aj−qj(P)|.

This allows us to remove the maximum:

E
[

k
max
j=1
|aj − qj(P)|

]
= E [a∗ − q∗(P)|(q∗, a∗) = f(q1, a1, · · · , qk, ak)] .
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We use the triangle (in)equality:

E [a∗ − q∗(P)] ≤ E [a∗ − q∗(x)] + E [q∗(x)− q∗(P)] ,

which may be paraphrased as

true error ≤ empirical error + generalization error.

Now we bound the terms separately. The emprical error is easy to bound:

E [a∗ − q∗(x)] ≤ E
[

k
max
j=1
|aj − qj(x)|

]
= E

[
k

max
j=1
|N (0, σ2)|

]
≤ 2σ

√
log k.

The generalization error is more involved, but we will show that

E [q∗(x)− q∗(P)] ≤
√
k

2nσ
. (3)

Thus we have

E
[

k
max
j=1
|aj − qj(P)|

]
≤ 2σ

√
log k +

√
k

2nσ
.

To minimize this we set σ2 =
√
k/4n

√
log k, giving

E
[

k
max
j=1
|aj − qj(P)|

]
≤ 2

√√
k log k

n
.

So, to prove Theorem 1, we just need

n ≥
√
k log k

(α/200)2
.

It just remains to prove (3).

5.2 Recap: KL Divergence

The Kullback-Leibler divergence between distributions P and Q is defined as

DKL (P‖Q) = E
x∼P

[
log

(
P (x)

Q(x)

)]
.

It satisfies the following useful properties:

• Non-negativity: DKL (P‖Q) ≥ 0. (But it is not symmetric i.e. DKL (P‖Q) 6= DKL (Q‖P )
in general.)
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• Pinsker’s inequality: ∆(P,Q) ≤
√

1
2
DKL (P‖Q). (Note that I’m dropping the ln 2 that

usually appears in this inequality. This just means I’m defining KL divergence using
the natural logarithm, rather than base-2 logarithm. So the units become nats rather
than bits. Today all logarithms will be natural, even though this is an information
theory course.)

Alternatively: Let X and Y be random variables in [0, 1]. Then∣∣∣E [X]− E [Y ]
∣∣∣ ≤√1

2
DKL (PX‖QY ).

• Chain rule: Let P × P ′ and Q×Q′ denote product distributions. Then

DKL (P × P ′‖Q×Q′) = DKL (P‖Q) + DKL (P ′‖Q′)

More generally, let P be a distribution on two variables, let P ′ be the marginal distri-
bution on the first variable and let P ′x be the conditional distribution on the second
variable given that the first variable is x. Define Q, Q′, and Q′x likewise. Then

DKL (P‖Q) = E
(x,y)∼P

[
log

(
P (x, y)

Q(x, y)

)]
= E
x∼P ′

[
E

y∼P ′x

[
log

(
P ′(x)P ′x(y)

Q′(x)Q′x(y)

)]]
= E
x∼P ′

[
log

(
P ′(x)

Q′(x)

)
+ E

y∼P ′x

[
log

(
P ′x(y)

Q′x(y)

)]]
=DKL (P ′‖Q′) + E

x∼P ′
[DKL (P ′x‖Q′x)]

≤DKL (P ′‖Q′) + max
x

DKL (P ′x‖Q′x) .

• Data processing inequality: Let f be a function. Then

DKL (f(P )‖f(Q)) ≤ DKL (P‖Q) , (4)

where f(P ) and f(Q) represent the distribution of the output of f when given a random
sample from P or Q as input. This also holds if f is a randomized function.

• For all a, b, σ ∈ R,

DKL

(
N (a, σ2)

∥∥N (b, σ2)
)

= E
x∼N (a,σ2)

[
log

(
1√
2πσ2

e−(x−a)
2/2σ2

1√
2πσ2

e−(x−b)2/2σ2

)]

= E
x∼N (a,σ2)

[
1

2σ2

(
−(x− a)2 + (x− b)2

)]
= E
x∼N (a,σ2)

[
1

2σ2
(a− b) (2x− a− b)

]
=

(a− b)2

2σ2
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5.3 The transcript

Consider a fixed analyst A and the mechanismM from (2). Given samples x1, · · · , xn ∈ X ,
we can simulate A andM interacting conditioned on these samples being drawn. This yields
a randomized function mapping the samples to a sequence of queries and answers. Call this
the transcript function TA→←M : X n → (Q× [0, 1])k.

We now formalise the intuition that M does not permit A to identify any samples.
Formally, we show that TA→←M is stable in the sense that changing one sample does not
affect the output distribution much.

Lemma 2. Let x1, · · · , xn, z ∈ X . Then

DKL

(
TA→←M(x1, · · · , xn)

∥∥∥TA→←M(x1, · · · , xi−1, z, xi+1, · · · , xn)
)
≤ k

2n2σ2
.

Proof. We show this by induction on k. Denote

TA→←M(x) = TA→←M(x1, · · · , xn) = (q1, a1, q2, a2, · · · , qk, ak)

and

TA→←M(x−i, z) = TA→←M(x1, · · · , xi−1, z, xi+1, · · · , xn) = (q′1, a
′
1, q
′
2, a
′
2, · · · , q′k, a′k).

We may assume inductively that

DKL

(
(q1, a1, · · · , qk−1, ak−1)

∥∥(q′1, a
′
1, · · · , q′k−1, a′k−1)

)
≤ k − 1

2n2σ2
.

Firstly qk is chosen by A given only q1, a1, · · · , qk−1, ak−1 – that is, it does not depend on x
other than through the transcript of the first k − 1 rounds. Thus, by the data processing
inequality,

DKL

(
(q1, a1, · · · , qk−1, ak−1, qk)

∥∥(q′1, a
′
1, · · · , q′k−1, a′k−1, q′k)

)
≤ k − 1

2n2σ2
.

Finally, by the chain rule,

DKL ((q1, a1, · · · , qk, ak)‖(q′1, a′1, · · · , q′k, a′k))
≤ DKL

(
(q1, a1, · · · , qk−1, ak−1, qk)

∥∥(q′1, a
′
1, · · · , q′k−1, a′k−1, q′k)

)
+ max

qk
DKL

(
aj
∥∥a′j)

≤ k − 1

2n2σ2
+ max

qk
DKL

(
N (qk(x), σ2)

∥∥N (qk(x−i, z), σ
2)
)

≤ k − 1

2n2σ2
+ max

qk

(qk(x)− qk(x−i, z))2

2σ2

≤ k − 1

2n2σ2
+ max

qk

(qk(xi)− qk(z))2

2n2σ2

≤ k

2n2σ2
.
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5.4 Overfitting

Now that we have elucidated the key property ofM, we show that this property can be used
to bound the generalization error (3).

Lemma 3 (Stability Prevents Overfitting). Suppose

DKL (T (x)‖T (x−i, z)) ≤ 2ε2

for all x ∈ X n, i ∈ [n], and z ∈ X . Then

E [q∗(x)− q∗(P)|q∗) = f(T (x))] ≤ ε

for all f , where the expectation is taken over the randomness of T and x1, · · · , xn ∼ P .

Combining Lemmas 2 and 3 yields (3): DKL

(
TA→←M(x)

∥∥∥TA→←M(x−i, z)
)
≤ k/2n2σ2 =

2ε2, whence E [q∗(x)− q∗(P)] ≤ ε =
√
k/4n2σ2.

Proof. We have

E [q∗(x)− q∗(P)|q∗ = f(T (x))]

=
1

n

n∑
i=1

E [q∗(xi)− q∗(P)|q∗ = f(T (x))] (by linearity of expectation)

≤ 1

n

n∑
i=1

E [q∗(xi)− q∗(P)|q∗ = f(T (x−i, z))]

+

√
1

2
DKL (f(T (x))‖f(T (x−i, z))) (by Pinsker’s inequality)

≤ 1

n

n∑
i=1

E [q∗(xi)− q∗(P)|q∗ = f(T (x−i, z))] + ε (by assumption and (4))

= 0 + ε,

where the final equality follows from the fact that xi and (q∗, a∗) = f(T (x−i, z)) are inde-
pendent.

This yields one side of the lemma and the other side is symmetric.

6 Differential Privacy

I have presented these results in terms of KL divergence. However, these ideas were originally
formulated using differential privacy :
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Definition 4 (Differential Privacy [DMNS06, DKM+06]). A randomized algorithm M :
X n → Y is said to satisfy (ε, δ)-differential privacy if, for all x, x′ ∈ X n differing in one
entry,

∀f : Y → {0, 1} P
M

[f(M(x)) = 1] ≤ eεP
M

[f(M(x′)) = 1] + δ.

The original motivation for this definition was data privacy: Imagine that x is a database
containing sensitive personal information and M(x) is being released publicly. For example,
x may be medical records and M(x) may be the published outcome of medical research.
We want to ensure that the publicly released output does not reveal any sensitive personal
information, such as an individual’s medical condition. Differential privacy provides a math-
ematical way to formalise this requirement. If one person’s data were removed from x or
replaced, we would have x′ instead and differential privacy guarantees that the outcomes
M(x) and M(x′) are indistinguishable — that is, that person’s information is not revealed.
For more discussion about the motivation of differential privacy, as well as various results
about differential privacy, read Dwork’s survey [Dwo06] or the textbook [DR14] on the sub-
ject.

Regardless of the original motivations for differential privacy, the definition can be re-
purposed for adaptive data analysis. Indeed it can be used to give a sharper analysis of the
mechanism M:

Theorem 5. There exists a mechanism M that takes n = O(
√
k log(k/αβ)/α2) samples

from an unknown distribution P on X and answers k adaptively-chosen queries q1, · · · , qk :
X → {0, 1} with a1, · · · , ak ∈ [0, 1] such that

P
[

k
max
j=1
|aj − qj(P)| > α

]
≤ β,

where the probability is over both the sample and the randomness of the mechanism.

Note that the logarithmic term in the above theorem can be improved [SU15a]. This
theorem follows from the following lemmata.

Lemma 6 (Analog of Lemma 2). The mechanism M given by (2)satisfies (ε, δ)-differential
privacy for all δ > 0 and

ε =
k

2n2σ2
+

√
2k log(1/δ)

nσ
.

(More precisely, TA→←M satisfies the above differential privacy bound for all A.)

Lemma 7 (Analog of Lemma 3). Suppose T satisfies (ε, δ)-differential privacy with 0 < δ <
ε/4 < 1/12. If n ≥ log(4ε/δ)/ε2, then

P [|q∗(x)− q∗(P)| > 10ε | q∗ = f(T (x))] ≤ δ

ε

for any function f , where the probability is taken over n i.i.d. samples x1, · · · , xn ∼ P as
well as the randomness of T .
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Lemma 7 is sharper than Lemma 3 in that it gives high-probability bounds, rather
than just a bound on the expectation. Lemma 7 can also be applied to a wide variety of
mechanisms from the differential privacy literature. In particular, we can attain sample
complexity n = Õ(

√
log |X | · log(k)/α3) [HR10], which is an improvement if log |X | � α2k

(at the price of computational efficiency).

References

[BNS+16] Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stemmer, and Jonathan Ull-
man. Algorithmic stability for adaptive data analysis. In ACM Symposium on the Theory of
Computing (STOC), 2016. http://arxiv.org/abs/1511.02513.

[DFH+15a] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron
Roth. Preserving statistical validity in adaptive data analysis. In ACM Symposium on the
Theory of Computing (STOC). ACM, June 2015. http://arxiv.org/abs/1411.2664.

[DFH+15b] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer
Reingold, and Aaron Roth. The reusable holdout: Preserving valid-
ity in adaptive data analysis. Science, 349(6248):636–638, June 2015.
http://science.sciencemag.org/content/349/6248/636.full.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
data, ourselves: Privacy via distributed noise generation. In EUROCRYPT, pages 486–503,
2006. http://www.iacr.org/cryptodb/archive/2006/EUROCRYPT/2319/2319.pdf.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, pages 265–284. Springer, March 4-7 2006.
http://www.iacr.org/cryptodb/archive/2006/TCC/3650/3650.pdf,.

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential pri-
vacy. Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.
https://www.cis.upenn.edu/ aaroth/Papers/privacybook.pdf.

[Dwo06] Cynthia Dwork. Differential privacy. In Automata, Languages and Programming, 33rd Inter-
national Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II, pages
1–12, 2006. http://dx.doi.org/10.1007/11787006 1.

[Har15a] Moritz Hardt. Competing in a data science contest without reading the data, March 2015.
http://blog.mrtz.org/2015/03/09/competition.html.

[Har15b] Moritz Hardt. The reusable holdout: Preserving validity in adaptive data analysis, August 2015.
http://googleresearch.blogspot.com/2015/08/the-reusable-holdout-preserving.html.

[HR10] Moritz Hardt and Guy Rothblum. A multiplicative weights mechanism for privacy-preserving
data analysis. In Proc. 51st Foundations of Computer Science (FOCS), pages 61–70. IEEE,
2010. http://ww.mrtz.org/papers/HR10mult.pdf.

[HU14] Moritz Hardt and Jonathan Ullman. Preventing false discovery in interactive data analysis is
hard. In FOCS. IEEE, October 19-21 2014. http://arxiv.org/abs/1408.1655.

[SU15a] Thomas Steinke and Jonathan Ullman. Between pure and approximate differential privacy.
CoRR, abs/1501.06095, 2015. http://arxiv.org/abs/1501.06095.

[SU15b] Thomas Steinke and Jonathan Ullman. Interactive fingerprinting codes and the hardness of pre-
venting false discovery. In Proceedings of The 28th Conference on Learning Theory (COLT’15),
pages 1588–1628, 2015. http://arxiv.org/abs/1410.1228.

10

http://arxiv.org/abs/1511.02513
http://arxiv.org/abs/1411.2664
http://science.sciencemag.org/content/349/6248/636.full
http://www.iacr.org/cryptodb/archive/2006/EUROCRYPT/2319/2319.pdf
http://www.iacr.org/cryptodb/archive/2006/TCC/3650/3650.pdf
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
http://dx.doi.org/10.1007/11787006_1
http://blog.mrtz.org/2015/03/09/competition.html
http://googleresearch.blogspot.com/2015/08/the-reusable-holdout-preserving.html
http://ww.mrtz.org/papers/HR10mult.pdf
http://arxiv.org/abs/1408.1655
http://arxiv.org/abs/1501.06095
http://arxiv.org/abs/1410.1228

	Motivation
	Model
	Cf. Non-adaptive Data Analysis
	What goes wrong in the adaptive setting?

	What Can We Do Adaptively?
	Proof
	Key steps
	Recap: KL Divergence
	The transcript
	Overfitting

	Differential Privacy

