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HOW TO COMPRESS INTERACTIVE COMMUNICATION∗
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Abstract. We describe new ways to simulate two-party communication protocols to get pro-
tocols with potentially less communication. We show that every communication protocol that com-
municates C bits and reveals I bits of information about the inputs to the participating parties can
be simulated by a new protocol involving at most Õ(

√
CI) bits of communication. If the protocol

reveals I bits of information about the inputs to an observer that watches the communication in the
protocol, we show how to carry out the simulation with Õ(I) bits of communication. These results
lead to a direct sum theorem for randomized communication complexity. Ignoring polylogarithmic
factors, we show that for worst-case computation, computing n copies of a function requires

√
n times

the communication required for computing one copy of the function. For average case complexity,
given any distribution μ on inputs, computing n copies of the function on n inputs sampled indepen-
dently according to μ requires

√
n times the communication for computing one copy. If μ is a product

distribution, computing n copies on n independent inputs sampled according to μ requires n times
the communication required for computing the function. We also study the complexity of computing
the sum (or parity) of n evaluations of f , and obtain results analogous to those above. Our results
give the first compression schemes for general randomized protocols and the first direct sum results
in the general setting of randomized and distributional communication complexity, without requiring
bound on the number of rounds in the protocol or that the distribution of inputs is independent.
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1. Introduction. In this work, we address two questions: (1) Can we compress
the communication of an interactive protocol so it is close to the information conveyed
between the parties? (2) Is it harder to compute a function on n independent inputs
than to compute it on a single input? In the context of communication complexity,
the two questions are related, and our answer to the former will yield an answer to
the latter.

Techniques for message compression, first considered by Shannon [31], have had
a big impact on computer science, especially with the rise of the Internet and data
intensive applications. Today we know how to encode messages so that their length is
essentially the same as the amount of information that they carry (see, for example,
the textbook [7]). Can we get a similar savings in an interactive setting? A first at-
tempt might be to simply compress each message of the interaction in turn. However,
this compression involves at least 1 bit of communication for every message of the
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1328 BOAZ BARAK, MARK BRAVERMAN, XI CHEN, AND ANUP RAO

interaction, which can be much larger than the total information conveyed between
the parties. In this paper, we show how to compress interactive communication pro-
tocols in a way that is independent of the number of rounds of communication, and
in some settings, give compressed protocols with communication that has an almost
linear dependence on the information conveyed in the original protocol.

The second question is one of the most basic questions of theoretical computer
science, called the direct sum question, and is closely related to the direct product
question. A direct product theorem in a particular computational model asserts that
the probability of success of performing n independent computational tasks decreases
in n. Famous examples of such theorems include Yao’s XOR lemma [36] and Raz’s
parallel repetition theorem [28]. In the context of communication complexity, Shaltiel
[30] gave a direct product theorem for the discrepancy of a function, but it remains
open to give such a theorem for the success probability of communication tasks. A
direct sum theorem asserts that the amount of resources needed to perform n inde-
pendent tasks grows with n. While the direct sum question for general models such
as Boolean circuits has a long history (cf [34, 26, 10]), no general results are known,
and indeed they cannot be achieved by the standard reductions used in complexity
theory, as a black-box reduction mapping a circuit C performing n tasks into a circuit
C′ performing a single task will necessarily make C′ larger than C, rather than mak-
ing it smaller. Indeed it is known that at least the most straightforward/optimistic
formulation of a direct sum theorem for Boolean circuits is false.1

Nevertheless, direct sum theorems are known to hold in other computational mod-
els. For example, an optimal direct sum theorem is easy to prove for decision tree
depth. A more interesting model is communication complexity, where this question
was first raised by Karchmer, Raz, and Wigderson [19] who conjectured a certain di-
rect sum result for deterministic communication complexity of relations, and showed
that it would imply that P � NC1. Feder et al. [8] gave a direct sum theorem for
nondeterministic communication complexity, and deduced from it a somewhat weaker
result for deterministic communication complexity—if a single copy of a function f
requires C bits of communications, then n copies require Ω(

√
Cn) bits. Feder et al.

also considered the direct sum question for randomized communication complexity
(see also Open Problem 4.6 in [23]) and showed that the dependence of the communi-
cation on the error of the protocol for many copies can be better than that obtained
by the naive protocol for many copies.

1.1. External and internal information cost. We follow the information
complexity approach to proving direct sum theorems. This approach was explicitly
introduced by [6] and used by several other works. (See section 1.2 below for more
about related works.) The approach is based on a measure, which we call the external
information cost,2 which roughly speaking measures the minimum number of bits
of information that an external observer will learn about the inputs of two parties
engaged in any protocol to compute a particular function. The formal definition is as
follows.

1The example comes from fast matrix multiplication. By a counting argument, there exists an
n × n matrix A over GF(2) such that the map x �→ Ax requires a circuit of Ω(n2/ logn) size. But
the map (x1, . . . , xn) �→ (Ax1, . . . , Axn) is just the product of the matrices A and X (whose columns
are x1, . . . , xn) and hence can be carried out by a circuit of O(n2.38) � n · (n2/ logn). See Shaltiel’s
paper [30] for more on this question.

2This notion was called simply information cost or information complexity by prior works. We
use the name “external” to distinguish it from the notion of internal information cost defined below,
which was not explicitly named by prior works.

D
ow

nl
oa

de
d 

12
/0

9/
15

 to
 1

8.
11

1.
81

.1
17

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HOW TO COMPRESS INTERACTIVE COMMUNICATION 1329

Definition 1.1 (external information cost). Given a distribution μ on inputs
X,Y , and protocol π, denoting by π(X,Y ) the public randomness and messages ex-
changed during the protocol, the external information cost ICo

μ(π) is defined to be the
mutual information between the inputs and π(X,Y ):

ICo
μ(π)

def
= I(XY ;π(X,Y )).

For a function f , the external information cost of f with respect to μ is defined to
be the infimum of ICo

μ(π) over all protocols π that compute f on inputs from π with
probability larger than 2/3.

Clearly, the external information cost is always smaller than the communication
complexity, and if the inputs to the parties are independent of each other (i.e., X is
independent of Y ), an optimal direct sum theorem can be proved for this measure of
complexity. That is, if the external information cost of f is c and we choose inde-
pendently n pairs of inputs (X1, Y1), . . . , (Xn, Yn), then any protocol for computing
the tuple f(X1, Yn) · · · f(Xn, Yn) must reveal cn bits of information about these input
tuples. Thus the problem of proving direct sum theorems for independent inputs re-
duces to the problem of simulating a protocol τ with small external information cost
with a protocol ρ that has small communication. That is, the direct sum question
reduces to the problem of protocol compression. Previous works (see section 1.2) ob-
tained restricted direct sum theorems by compressing every message of the protocol
individually. Our stronger method of compression allows us to get new direct sum
theorems that are independent of the number of rounds of communication.

Internal information cost. In this work we use also a second measure of the infor-
mation complexity of a communication protocol, which we call the internal informa-
tion cost of a protocol. This is the information that the parties in the protocol learn
about each other’s inputs through observing the messages and public randomness of
the protocol. Formally, the definition is as follows.

Definition 1.2 (internal information cost). Given a distribution μ on inputs
X,Y , and protocol π, denoting by π(X,Y ) the public randomness and messages ex-
changed during the protocol, the internal information cost ICi

μ(π) is defined to be

ICi
μ(π)

def
= I(X ;π(X,Y )|Y ) + I(Y ;π(X,Y )|X).

Since each party knows her own input, the protocol can only reveal less additional
information to her than to an independent observer. Indeed, it can be shown that the
internal information cost is never larger than the external information cost and that
the two are equal if the inputs X,Y are independent of each other. However, in the
case that the inputs are dependent, the internal information cost may be significantly
smaller—for example, if μ is a distribution where X = Y always, then the internal
information cost is always 0, though the external information cost may be arbitrarily
large. It is also easy to check that if π is deterministic, then the internal information
cost is simply the sum of the entropies ICi

μ(π) = H(π(X,Y )|Y ) + H(π(X,Y )|X),
which is the same as H(π(X,Y )) if X,Y are independent.

The notion of internal information cost was used implicitly by Bar-Yossef et
al. [3], and a direct sum theorem for this notion (using the techniques originating from
Razborov [27] and Raz [28]) is implicit in their work. In contrast to the analogous
result for external information cost, the direct sum theorem for internal information

D
ow

nl
oa

de
d 

12
/0

9/
15

 to
 1

8.
11

1.
81

.1
17

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1330 BOAZ BARAK, MARK BRAVERMAN, XI CHEN, AND ANUP RAO

cost holds whether or not the inputs to the parties are independent of each other.
This means that a method to compress a protocol to have communication related
to its internal information cost can be used to obtain a direct sum theorem even
in the case that the inputs to both parties are not independent. This is crucial for
our application to a direct sum theorem for (worst-case) randomized communication
complexity.

Our most important contributions are two new protocol compression methods that
reduce the communication of protocols in terms of their information costs. We give two
methods to compress protocols. Our first method shows that one can always simulate
a protocol of internal information cost I and communication complexity C using an
expected number of Õ(

√
IC) communication bits. The second method shows how to

simulate a protocol of external information cost I with Õ(I) communication. Note
that in both cases the communication complexity of the simulation is independent
of the number of rounds. Indeed, these are the first compression schemes that do
true protocol compression, as opposed to compressing each round at a time, and are
the first results that succeed for randomized protocols even when the inputs are not
independent.

As a result, we obtain the first nontrivial direct sum theorem for randomized
communication complexity. Loosely speaking, letting fn be the function that outputs
the concatenation of n invocations of f on independent inputs, and letting f+n be the
function that outputs the XOR of n such invocations, we show that (a) the randomized
communication complexity of both fn and f+n is up to logarithmic factors

√
n times

the communication complexity of f , and (b) the distributional complexity of both fn

and f+n over the distribution μn, where μ is a product distribution over individual
input pairs, is n times the distributional complexity of f .3

1.2. Related works. There has been a vast amount of work on the question of
direct sum and direct product theorems for various computation and communication
models. We now discuss some of the works that are most relevant to our own, fo-
cusing on the direct sum question for randomized and distributional communication
complexity in the classical (i.e., nonquantum) setting. Chakrabarti et al. [6] explicitly
introduced the notion of (external) information cost, variants of which were implicitly
used by other works as well [2, 1, 29]. Chakrabati et al. focused on the case of the
uniform distribution on inputs, which in particular means the inputs to both parties
are independent. They showed for this case a direct sum theorem for the external
information cost, as well as a (slightly restricted) compression result in the simultane-
ous messages model (in which the protocol consists of each party sending one message
that depends only on its input, and not on the other party’s message). They thus
derived some direct sum theorems for this model. Bar-Yossef et al. [3] extended the
definition of external information cost to arbitrary distributions. They also defined a
notion which they called “conditional information cost” which is different but related
to our notion of internal information cost, and gave a direct sum theorem for this
notion, whose proof we adapt to our direct sum for internal information cost. They
then combined this direct sum with information cost lower bounds for concrete sim-
ple functions such as AND to obtain improved lower bounds for the set disjointness
and Lp approximation problems. In a sequence of works, Jain, Radhakrishnan, and
Sen [13, 14] and Harsha et al. [11] improved the message compression result of [6],

3In both (a) and (b), there is a loss of a constant additive factor in the actual statement of the
result for f+n. This accounts for the fact that if, say, f is the XOR function itself, then clearly there
is no direct sum theorem. See Remark 2.10.
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HOW TO COMPRESS INTERACTIVE COMMUNICATION 1331

showing that one can compress each message of a protocol to roughly its contribution
to the external information cost plus some constant overhead. This results in an es-
sentially optimal direct sum theorem for distributional communication complexity for
protocols with a bounded number of rounds with respect to any product distribution
over the inputs.

Related problems have also been considered in the information theory literature.
Stated in our language, the now classical Slepian–Wolf theorem [33] (see also [35])
is about compressing one message deterministic protocols according to the internal
information cost of the protocol. In this case, the internal information cost is simply
I(X ;M |Y ) = H(M |Y ), where here X,Y are the inputs and M is the lone message
transmitted by the first party. The theorem shows how to transmit n independent
messages M1, . . . ,Mn to a receiver that knows the corresponding inputs Y1, . . . , Yn,
using amortized (one way) communication that is close to the internal information
cost. In contrast, the results in our work are about compressing a single interaction,
which is a harder problem since we cannot enjoy the “economies of scale” of amortized
analysis. A caveat is that our compression schemes yield interactive communication
protocols, as opposed to one way communication.

1.3. Subsequent work. Subsequent papers further developed the notion of in-
ternal information complexity and its application to direct sum and direct product
theorems. We mention some of the works here. In [5] it has been shown that in
the limit, the per-copy randomized communication complexity of solving n copies
of a problem is equal to its internal information complexity. Thus progress towards
stronger direct sum theorems is tightly linked to progress in obtaining better com-
pression schemes. Unfortunately, no new general compression schemes have emerged.
Still, it has been shown that a large class of communication complexity lower bound
techniques also yield information complexity lower bounds [20]—thus yielding the di-
rect sum theorem for the randomized communication complexity of a large class of
problems. The notion of information complexity has also been extended to the set-
ting without a prior distribution. In the prior-free case, the information complexity
of a problem corresponds to its amortized randomized (worst-case) communication
complexity.

Closely related to the direct sum problem is the direct product problem. While
direct sum theorems aim to show that performing n copies of a task in parallel with
the same success probability as the original task requires n times as much communi-
cation, direct product theorems assert that expending a substantially lower amount
of communication will result in an exponentially smaller success probability. Thus di-
rect product theorems are stronger than direct sum theorems. Strong direct product
theorems are known in several special cases: for example, when f is the disjointness
function [21], or f is known to have small discrepancy [30, 24, 32], or have a smooth
rectangle bound [16]. Since we know that the amortized communication complexity of
a function is equal to its information complexity, the best direct product theorem one
can hope for is that computing n copies of f using communication substantially lower
than n times the information complexity of f will only succeed with an exponentially
small probability. Unfortunately, such a general result remains elusive. However, a
recent result [4] shows that the direct sum theorems in the present paper can in fact
be strengthened to direct product theorems.

2. Our results. We give two new protocol compression algorithms, that take
a protocol π whose information cost is small and transform it into a protocol τ of
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small communication complexity.4 Below we denote the communication complexity
of a protocol τ by CC(τ).

Theorem 2.1. For every distribution μ, every protocol π, and every ε > 0, there
exist functions πx, πy, and a protocol τ such that |πx(X, τ(X,Y )) − π(X,Y )| < ε,
Pr[πx(X, τ(X,Y )) �= πy(Y, τ(X,Y ))] < ε, and

CC(τ) ≤ O

(√
CC(π) · ICi

μ(π)
log(CC(π)/ε)

ε

)
.

If the players want to obtain the results of running the protocol π, they can run τ
instead and then use the functions πx, πy to reconstruct the effects of running π. The
condition |πx(X, τ(X,Y )) − π(X,Y )| < ε ensures that the transcript of τ specifies
a unique leaf in the protocol tree for π in such a way that this leaf is ε-close in
statistical distance to the leaf sampled by π. The condition that Pr[πx(X, τ(X,Y )) �=
πy(Y, τ(X,Y ))] < ε guarantees that with high probability both players achieve a
consensus on what the sampled leaf was. Thus, the triple τ, πx, πy specifies a new
protocol that is a compression of π.

Our second result gives a simulation for protocols with small external information
cost.

Theorem 2.2. For every distribution μ, every protocol π, and every α > 0, there
exist functions πx, πy, and a protocol τ such that |πx(X, τ(X,Y )) − π(X,Y )| < α,
Pr[πx(X, τ(X,Y )) �= πy(Y, τ(X,Y ))] < α, and

CC(τ) ≤ O

(
ICo

μ(π)
log(CC(π)/α)

α2

)
.

Our results can be viewed as a generalization of the traditional notion of string
compression, a notion that applies only to the restricted case of deterministic one
way protocols. In the above theorems, our compressed protocols may use public
randomness that can be large (though still bounded in terms of the communication
complexity of the original protocol). However, we note that by the results of Newman
[25], any protocol that achieves some functionality can be converted into another
protocol that achieves the same functionality and uses few public random bits. Thus
our compression schemes are useful even when public randomness is expensive.

2.1. Direct sum theorems. Given a function f : X × Y → Z, we define the
function fn : Xn × Yn → Zn to be the concatenation of the evaluations:

fn(x1, . . . , xn, y1, . . . , yn)
def
= (f(x1, y1), f(x2, y2), . . . , f(xn, yn)).

Denote by Rρ(f) the communication complexity of the best randomized public
coin protocol for computing f that errs with probability at most ρ. In this paper we
show the following theorem.

Theorem 2.3 (direct sum for randomized communication complexity). For every
α > 0,

Rρ(f
n) · log (Rρ(f

n)/α) ≥ Ω
(
Rρ+α(f)α

√
n
)
.

4 We note that this is in the communication complexity model, and hence these algorithms are not
necessarily computationally efficient. Even for single message compression, there are distributions
with small entropy that cannot be efficiently compressed (e.g., pseudorandom distributions).
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Theorem 2.3 is obtained using Yao’s min-max principle from an analogous theo-
rem for distributional communication complexity. For a distribution μ on the inputs
X ×Y, we write Dμ

ρ (f) to denote the communication complexity of the best protocol
(randomized or deterministic) that computes f with probability of error at most ρ
when the inputs are sampled according to μ. We write μn to denote the distribution
on n inputs, where each is sampled according to μ independently.

We first state the direct sum theorem for information content that is implicit in
the work of [3].

Theorem 2.4. For every μ, f, ρ there exists a protocol τ computing f on inputs
drawn from μ with probability of error at most ρ and communication at most Dμn

ρ (fn)

such that ICi
μ(τ) ≤

2Dμn

ρ (fn)

n .
Compressing protocol τ above using Theorem 2.1 reduces the communication of

this protocol to Õ(
√

ICi
μ(τ)D

μn

ρ (fn)) = Õ(Dμn

ρ (fn)/
√
n). Formally, we prove the

following theorem.
Theorem 2.5 (direct sum for distributional communication complexity). For

every α > 0,

Dμn

ρ (fn) · log
(
Dμn

ρ (fn)/α
)
≥ Ω

(
Dμ

ρ+α(f)α
√
n
)
.

The communication complexity bound of Theorem 2.5 only grows as the square
root of the number of repetitions. However, in the case that the distribution on inputs
is a product distribution, we use our stronger compression (Theorem 2.2) to obtain a
direct sum theorem that is optimal up to logarithmic factor.

Theorem 2.6 (direct sum for product distributions). If μ is a product distribu-
tion, then for every α > 0

Dμn

ρ (fn) · log
(
Dμn

ρ (fn)/α
)
≥ Ω

(
Dμ

ρ+α(f)α
2n
)
.

2.1.1. XOR lemmas for communication complexity. When n is very large
in terms of the other quantities, the above theorems can be superseded by trivial
arguments, since fn must require at least n bits of communication just to describe
the output. Our next set of theorems show that almost the same bounds apply to the
complexity of the XOR (or more generally sum modulo K) of n copies of f , where
the trivial arguments do not hold. Assume that the output of the function f is in the
group ZK for some integer K, and define

f+n(x1, . . . , xn, y1, . . . , yn)
def
=

n∑
i=1

f(xi, yi).

We have the following results for the complexity of f+n.
Theorem 2.7 (XOR lemma for randomized communication complexity). For

every α > 0,

Rρ(f
+n) · log

(
Rρ(f

+n)/α
)
≥ Ω

(
(Rρ+α(f)− 2 logK)α

√
n
)
.

Theorem 2.8 (XOR lemma for distributional communication complexity). For
every α > 0,

Dμn

ρ (f+n) · log
(
Dμn

ρ (f+n)/α
)
≥ Ω

((
Dμ

ρ+α(f)− 2 logK
)
α
√
n
)
.
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Theorem 2.9 (XOR lemma for product distributions). If μ is a product distri-
bution, then for every α > 0,

Dμn

ρ (f+n) · log
(
Dμn

ρ (f+n)/α
)
≥ Ω

((
Dμ

ρ+α(f)− 2 logK
)
α2n

)
.

Remark 2.10. If f : ZK × ZK → ZK is itself the sum function, then the com-
munication complexity of f+n does not grow at all, since there is a simple protocol
to compute

∑
i(xi + yi) =

∑
i xi +

∑
j yj using 2 logK bits. This suggests that some

kind of additive loss (like the 2 logK term above) is necessary in the above theorems.

3. Our techniques. We now give an informal overview of our compression al-
gorithms. Our direct sum results are obtained in section 5 by combining these with
the direct sum for information content proven in section 6. Full descriptions of the
compression algorithms are given in section 7 (for the general case) and section 8 (for
the product distribution case).

The goal of our compression algorithms is to take a protocol that uses large
amounts of communication and conveys little information, and convert it into a pro-
tocol that makes better use of the communication to achieve better communication
complexity. (Such algorithms need not be necessarily computationally efficient; see
footnote 4.)

Note that generic message compression can be fit into this context by considering
a deterministic one way protocol, where playerX needs to send a message to player Y .
In this classical setting it is well known that protocol compression (i.e., simple data
compression) can be achieved. In principle, one could try to apply round-by-round
message compression to compress entire protocols. This approach suffers from the
following fatal flaw: individual messages may (and are even likely) to contain � 1
bit of information. The communication cost of ≥ 1 bit per round would thus be �
information content of the round. Thus any attempt to implement the compression
on a round-by-round basis, as opposed to an entire-protocol basis may work when the
number of rounds is bounded, but is doomed to fail in general.

An instructive example on conveying a subconstant amount of information that
we will use later in this exposition is the following. Suppose that player X gets n
independent random bits x1, . . . , xn and Y has no information about them. X then
computes the majority m = MAJ(x1, . . . , xn) and sends it to Y . With a perfectly
random prior, the bit m is perfectly balanced, and thus in total X conveys one bit of
information to Y . Suppose that in the protocol Y only really cared about the value
of x5. How much information did X convey about the input x5? By symmetry and
independence of the inputs, X conveys 1/n bits of information about x5. After the bit
m (suppose m = 1) is received by Y , her estimate of P [x5 = 1] changes from 1/2 to
1/2+Θ(1/

√
n). The fact that changing the probability from 1/2 to 1/2+ ε only costs

ε2 bits of information is the cause for the suboptimality of our general compression
algorithm.

There are several challenges that need to be overcome to compress an arbitrary
protocol. An interesting case to consider is a protocol where the players alternate
sending each other messages, and each transmitted message is just a bit with in-
formation content ε � 1. In this case, we cannot afford to even transmit one bit to
simulate each of the messages, since that would incur an overhead of 1/ε, which would
be too large for our application. This barrier was one of the big stumbling blocks for
earlier works, which is why their results applied only when the number of rounds in
the protocols was forced to be small.
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v

u

0 1 0 0 1 1 1 0

O v,x(0) [O v,y(0)] O v,x(1) [O v,y(1)]

O u,y(0) [O u,x(0)] O u,y(1) [O u,x(1)]

Fig. 1. An illustration of the protocol tree for π. The round nodes are owned by X and the
square nodes are owned by Y . On each edge the “correct” probability is indicated. The “approximate”
probability that is estimated by the player who does not own the node is shown in the brackets.

We give two simulation protocols to solve this problem. The first solution works
for all distributions, achieving suboptimal parameters, while the second works only for
product input distributions and achieves optimal parameters up to polylogarithmic
factors. In both solutions, the players simulate the original protocol π using shared
randomness. The intuition is that if a message contains a small amount of information,
then we do not need to communicate it, and can sample it using shared randomness
instead.

It will be convenient to think of a protocol in terms of its protocol tree, after fixing
the shared randomness (there may still be private randomness that is not fixed). This
is a binary tree where every node v belongs to one of the parties in the protocol, and
specifies the probability of sending 1 or 0 as the next bit. We then define the tree of
probabilities illustrated in Figure 1 as follows. For each node vx of the protocol tree
that is owned by the player X (i.e., it is his turn to speak), player X knows the “cor-
rect” probabilities Ovx,x(0) and Ovx,x(1) of the bit that she is about to send. Player
Y does not know these probabilities, but she has estimates Ovx,y(0) and Ovx,y(1) for
them based on her input Y (formally these estimates are simply the probability of
seeing a 0 or 1 conditioned on the protocol reaching vx and conditioned on y). In the
case where the input distribution μ is a product distribution μ = μx×μy, the X player
can also compute the estimates Ovx,y(0) and Ovx,y(1), since they are independent of
the input y given the node vx. The goal is to simulate the protocol according to the
“correct” distributions.

3.1. Compression according to the internal information cost. In our first
compression protocol, the players use shared randomness to sample the bit at every
node of the protocol tree for π(x, y). In other words, for every prefix v of messages,
each player samples the next bit of the interaction according to the best guess that
they have for how this bit is distributed, even if the next bit is actually transmitted by
the other player in the original protocol. The players do this using shared randomness,
in a way that guarantees that if their guesses are close to the correct distribution, then
the probability that they sample the same bit is high. More precisely, the players share
a random number κv ∈ [0, 1] for every node v in the tree, and each player guesses the
next bit following v to be 1, if the player’s estimated probability for the message being
1 is at least κv. Note that the player that owns v samples the next bit with the correct
probability. It is not hard to see that the probability of getting inconsistent samples

at the node v is at most |Ov,x−Ov,y|
def
= (|Ov,x(0)−Ov,y(0)|+ |Ov,x(1)−Ov,y(1)|)/2.

Once they have each sampled from the possible interactions, we shall argue that there
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u

v

w

0 1 0 0 1 0 1 0

u

v

w

0 1 0 0 1 0 1 0

Player X Player Y

Fig. 2. An illustration of the compression protocol for nonproduct distributions. The circle
nodes are owned by player X and the square nodes are owned by Y . The figure illustrates the states
of the protocol trees after all the bits have been sampled. The players then proceed to resolve their
disagreements. The disagreement at node u is resolved in favor of X since he owns the node. The
protocol proceeds to node v where the disagreement is resolved in favor of Y . The final computation
path in this case is u− v−w, the output is 0, and the total number of disagreements along the path
is 2.

is a correct leaf in the protocol tree, whose distribution is exactly the same as the leaf
in the original protocol. This is the leaf that is obtained by starting at the root and
repeatedly taking the edge that was sampled by the owner of the node. We then show
how the players can use hashing and binary search to communicate a polylogarithmic
number of bits with each other to resolve the inconsistencies in their samples and
find this correct path with high probability. In this way, the final outcome will be
statistically close to the distribution of the original protocol. An example run for this
protocol is illustrated in Figure 2. The additional interaction cost scales according
to the expected number of inconsistencies on the path to the correct leaf, which we
show can be bounded by

√
I · C, where I is the information content and C is the

communication cost of the original protocol.
Recall from the majority example above that ε information can mean that |Ov,x−

Ov,y| ≈
√
ε. In fact, the “worst-case” example for us is when in each round I/C

information is conveyed, leading to a per-round error of
√
I/C and a total expected

number of mistakes of
√
I/C · C =

√
I · C.

3.2. Compression according to the external information cost. Our more
efficient solution gives a protocol with communication complexity within polyloga-
rithmic factors of the external information cost. It is illustrated on Figure 3. The
idea in this case is to simulate chunks of the protocol that convey a constant amount
of information each. If we can simulate a portion of the protocol that conveys a con-
stant (or even 1/polylog) amount of information using a polylogarithmic number of
bits of communication, then we can simulate the entire protocol using Õ(I) bits of
communication.

The advantage the players have in the case that we are measuring information
from the viewpoint of an observer is that for each node in the tree, the player who
owns that node knows not only the correct distribution for the next bit, but also
knows what the distribution that the observer has in mind is. They can use this
shared knowledge to sample entire paths according to the distribution that is common
knowledge at every step. In general, the distribution of the sampled path can deviate
quite a bit from the correct distribution. However, we argue that if the information
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v

u

Fig. 3. An illustration of the compression protocol for product distributions. The gray layer
represents the “frontier” of nodes where some fixed amount of information is conveyed in the original
protocol, and which is simulated in one iteration of the compressed protocol. Once the players agree
on a node u, they compute a new frontier, illustrated here by the black layer.

conveyed on a path is small (1/ polylog bit), then the difference between the correct
and the approximate probability is constant. After sampling the approximate bits for
an appropriate number of steps so as to cover 1/ polylog information, the players can
communicate to estimate the correct probability with which this node was supposed
to occur. The players can then either accept the sequence or resample a new sequence
in order to get a final sample that behaves in a way that is close to the distribution of
the original protocol. The method of sampling a message by repeatedly sampling from
shared randomness is widely known as rejection sampling, and was used by several
prior works about compressing protocols [11, 15] and by others [22, 12] in the context
of theoretical computer science.

There are several technical challenges involved in getting this to work. The fact
that the inputs of the players are independent is important for the players to decide
how many messages the players should try to sample at once to get to the frontier
where 1/ polylog bits of information have been revealed. When the players’ inputs are
dependent, they cannot estimate how many messages they should sample before the
information content becomes too high, and we are unable to make this approach work.

4. Preliminaries.
Notation. We reserve capital letters for random variables and distributions, calli-

graphic letters for sets, and small letters for elements of sets. Throughout this paper,
we often use the notation |b to denote conditioning on the event B = b. Thus A|b is
shorthand for A|B = b. Given a sequence of symbols A = A1, A2, . . . , Ak, we use A≤j

to denote the prefix of length j.
We use the standard notion of statistical/total variation distance between two

distributions.
Definition 4.1. Let D and F be two random variables taking values in a set S.

Their statistical distance is

|D − F | def= max
T ⊆S

(|Pr[D ∈ T ]− Pr[F ∈ T ]|) = 1

2

∑
s∈S

|Pr[D = s]− Pr[F = s]|.
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If |D − F | ≤ ε we shall say that D is ε-close to F . We shall also use the notation

D
ε≈ F to mean D is ε-close to F .

4.1. Information theory.
Definition 4.2 (entropy). The entropy of a random variable X is

H(X)
def
=

∑
x

Pr[X = x] log(1/Pr[X = x]).

The conditional entropy H(X |Y ) is defined to be Ey∈
R
Y [H(X |Y = y)].

Fact 4.3. H(AB) = H(A) +H(B|A).
Definition 4.4 (mutual information). The mutual information between two

random variables A and B, denoted I(A;B), is defined to be the quantity H(A) −
H(A|B) = H(B)−H(B|A). The conditional mutual information I(A;B|C) is H(A|C)
−H(A|BC).

In analogy with the fact that H(AB) = H(A) + H(B|A), we have the next
proposition.

Proposition 4.5. Let C1, C2, D,B be random variables. Then

I(C1C2;B|D) = I(C1;B|D) + I(C2;B|C1D).

The previous proposition immediately implies the following proposition.
Proposition 4.6 (superadditivity of mutual information). Let C1, C2, D,B be

random variables such that for every fixing of D, C1 and C2 are independent. Then

I(C1;B|D) + I(C2;B|D) ≤ I(C1C2;B|D).

We also use the notion of divergence, which is a different way to measure the
distance between two distributions.

Definition 4.7 (divergence). The informational divergence between two distri-

butions is D (A||B)
def
=

∑
x A(x) log(A(x)/B(x)).

For example, if B is the uniform distribution on {0, 1}n, then D (A||B) = n −
H(A).

Proposition 4.8. D (A||B) ≥ |A−B|2.
Proposition 4.9. Let A,B,C be random variables in the same probability space.

For every a in the support of A and c in the support of C, let Ba denote B|A = a and
Bac denote B|A = a, C = c. Then I(A;B|C) = Ea,c∈

R
A,C [D (Bac||Bc)].

The above facts imply the following easy proposition.
Proposition 4.10. With notation as in Proposition 4.9, for any random vari-

ables A,B,

E
a∈

R
A
[|(Ba)−B|] ≤

√
I(A;B).

Proof.

E
a∈

R
A
[|(Ba)−B|] ≤ E

a∈
R
A

[√
D (Ba||B)

]

≤
√

E
a∈

R
A
[D (Ba||B)] (by convexity)

=
√
I(A;B) (by Proposition 4.9).

D
ow

nl
oa

de
d 

12
/0

9/
15

 to
 1

8.
11

1.
81

.1
17

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HOW TO COMPRESS INTERACTIVE COMMUNICATION 1339

Generic Communication Protocol
1. Set v to be the root of the protocol tree.
2. If v is a leaf, the protocol ends and Alice and Bob output the corresponding

values Av(x) and Bv(x). Otherwise, the player owning v samples a child of
v according to the distribution associated with her input for v and sends
a bit to the other player to indicate which child was sampled.

3. Set v to be the newly sampled node and return to the previous step.

Fig. 4. A communication protocol.

4.2. Communication complexity. Let X ,Y denote the set of possible inputs
to the two players, who we name Px, Py. In this paper, we view a private coin protocol
for computing a function f : X×Y → ZK as a binary tree with the following structure:

• each node is owned by Px or by Py;
• for every x ∈ X , each internal node v owned by Px is associated with a
distribution Ov,x supported on the children of v. Similarly, for every y ∈
Y, each internal node v owned by Py is associated with a distribution Ov,y

supported on the children of v;
• each leaf � of the protocol is labeled with functions A� : X → ZK and B� :
Y → ZK that allow Alice and Bob to compute the output.

On input x, y, the protocol π is executed as in Figure 4. The protocol is said to
succeed in computing f if it terminates on a leaf � such that A�(x) = B�(y) = f(x, y).
Note that in general Alice and Bob do not have to give the same output at the
end of the protocol’s execution, but giving divergent outputs results in an automatic
failure.

A public coin protocol is a distribution on private coin protocols, run by first using
shared randomness to sample an index r and then running the corresponding private
coin protocol πr. Every private coin protocol is thus a public coin protocol. The pro-
tocol is called deterministic if all distributions labeling the nodes have support size 1.

Definition 4.11. The communication complexity of a public coin protocol π,
denoted CC(π), is the maximum depth of the protocol trees in the support of π.

Given a protocol π, π(x, y) denotes the concatenation of the public randomness
with all the messages that are sent during the execution of π. We call this the
transcript of the protocol. We shall use the notation π(x, y)j to refer to the jth
transmitted bit in the protocol. We write π(x, y)≤j to denote the concatenation of the
public randomness in the protocol with the first j message bits that were transmitted
in the protocol. Given a transcript, or a prefix of the transcript, v, we write CC(v) to
denote the number of message bits in v (i.e., the length of the communication).

We often assume that every leaf in the protocol is at the same depth. We can do
this since if some leaf is at depth less than the maximum, we can modify the protocol
by adding dummy nodes which are always picked with probability 1, until all leaves
are at the same depth. This does not change the communication complexity.

Definition 4.12 (communication complexity notation). For a function f : X ×
Y → ZK , a distribution μ supported on X ×Y, and a parameter ρ > 0, Dμ

ρ (f) denotes
the communication complexity of the cheapest deterministic protocol for computing f
on inputs sampled according to μ with error ρ. Rρ(f) denotes the cost of the best
randomized public coin protocol for computing f with error at most ρ on every input.

We shall use the following fact, first observed by Yao.
Fact 4.13 (Yao’s min-max). Rρ(f) = maxμ D

μ
ρ (f).
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4.3. Finding differences in inputs. We use the following lemma of Feige et
al. [9].

Lemma 4.14 (see [9]). There is a randomized public coin protocol τ with commu-
nication complexity O(log(k/ε)) such that on input of two k-bit strings x, y, it outputs
the first index i ∈ [k] such that xi �= yi with probability at least 1 − ε, if such an i
exists.

For completeness, we include the proof (based on hashing) in Appendix C.

4.4. Measures of information complexity. Here we briefly discuss the two
measures of information cost defined in the introduction.

Let R be the public randomness, and X,Y be the inputs to the protocol π. By
the chain rule for mutual information,

ICo
μ(π) = I(XY ;π(X,Y ))

= I(XY ;R) +

CC(π)∑
i=1

I(XY ;π(X,Y )i|π(X,Y )<i)

= 0 +

CC(π)∑
i=1

I(XY ;π(X,Y )i|π(X,Y )<i),

ICi
μ(π) = I(X ;π(X,Y )|Y ) + I(Y ;π(X,Y )|X)

= I(X ;R|Y ) + I(Y ;R|X) +

CC(π)∑
i=1

I(X ;π(X,Y )i|Y π(X,Y )<i)

+ I(Y ;π(X,Y )i|Xπ(X,Y )<i)

= 0 +

CC(π)∑
i=1

I(X ;π(X,Y )i|Y π(X,Y )<i) + I(Y ;π(X,Y )i|Xπ(X,Y )<i).

Let w be any fixed prefix of the transcript of length i− 1. If it is the X player’s
turn to speak in the protocol, I(Y ;π(X,Y )i|X, π(X,Y )≤i−1 = w) = 0. If it is the Y
player’s turn to speak, then I(X ;π(X,Y )i|Y, π(X,Y )≤i−1 = w) = 0. On the other
hand I(XY ;π(X,Y )i|π(X,Y )≤i−1 = w) ≥ max{I(X ;π(X,Y )i|Y π(X,Y )≤i−1 = w),
I(Y ;π(X,Y )i|Xπ(X,Y )≤i−1 = w)} by the chain rule.

Thus, we get the following fact.
Fact 4.15. ICo

μ(π) ≥ ICi
μ(π).

If μ is a product distribution,

I(XY ;π(X,Y )i|π(X,Y )≤i−1 = w)

= I(X ;π(X,Y )i|π(X,Y )≤i−1 = w) + I(Y ;π(X,Y )i|Xπ(X,Y )≤i−1 = w)

= I(X ;π(X,Y )i|Y π(X,Y )≤i−1 = w) + I(Y ;π(X,Y )i|Xπ(X,Y )≤i−1 = w).

So we can conclude with the following.
Fact 4.16. If μ is a product distribution, ICi

μ(π) = ICo
μ(π).

We note that ICi
μ(π) and ICo

μ(π) can be arbitrarily far apart, for example, if μ is
such that Pr[X = Y ] = 1, then ICi

μ(π) = 0, even though ICo
μ(π) may be arbitrarily

large.
A remark on the role of public and private randomness. Public randomness is

considered part of the protocol’s transcript. But even if the randomness is short com-
pared to the overall communication complexity, making it public can have a dramatic
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effect on the information content of the protocol. (As an example, consider a protocol
where one party sends a message of x ⊕ r, where x is its input and r is random. If
the randomness r is private, then this message has zero information content. If the
randomness is public, then the message completely reveals the input. This protocol
may seem trivial since its communication complexity is larger than the input length,
but in fact we will be dealing with exactly such protocols, as our goal will be to “com-
press” communication of protocols that have very large communication complexity,
but very small information content.)

5. Proof of the direct sum theorems. In this section, we prove our direct sum
theorems. By Yao’s min-max principle, for every function f , Rρ(f) = maxμ D

μ
ρ (f).

Thus Theorem 2.5 implies Theorem 2.3 and Theorem 2.8 implies Theorem 2.7. So
we shall focus on proving Theorems 2.5 and 2.6, and the XOR lemmas Theorems 2.8
and 2.9.

By Theorem 2.4, the main step to establish Theorem 2.5 is to give an efficient
simulation of a protocol with small information content by a protocol with small
communication complexity. We shall use our two results on compression, that we
restate here.

Theorem 2.1 1 (restated). For every distribution μ, every protocol π, and every
ε > 0, there exist functions πx, πy, and a protocol τ such that |πx(X, τ(X,Y )) −
π(X,Y )| < ε, Pr[πx(X, τ(X,Y )) �= πy(Y, τ(X,Y ))] < ε, and

CC(τ) ≤ O

(√
CC(π) · ICi

μ(π)
log(CC(π)/ε)

ε

)
.

Theorem 2.2 1 (restated). For every distribution μ, every protocol π, and every
α > 0, there exist functions πx, πy, and a protocol τ such that |πx(X, τ(X,Y )) −
π(X,Y )| < α, Pr[πx(X, τ(X,Y )) �= πy(Y, τ(X,Y ))] < α, and

CC(τ) ≤ O

(
ICo

μ(π)
log(CC(π)/α)

α2

)
.

Proof of Theorem 2.5 from Theorem 2.1. Let π be any protocol computing fn on
inputs drawn from μn with probability of error less than ρ. Then by Theorem 2.4,
there exists a protocol τ1 computing f on inputs drawn from μ with error at most ρ
with CC(τ1) ≤ CC(π) and ICi

μ(τ1) ≤ 2CC(π)/n. Next, applying Theorem 2.1 to the
protocol τ1 gives that there must exist a protocol τ2 computing f on inputs drawn
from μ with error at most ρ+ α and

CC(τ2) ≤ O

(√
CC(τ1)ICi

μ(τ1) log(CC(τ1)/α)/α

)

= O
(√

CC(π)CC(π)/n log(CC(π)/α)/α
)

= O

(
CC(π) log(CC(π)/α)/α√

n

)
.

This proves Theorem 2.5.
Proof of Theorem 2.6 from Theorem 2.2. Let π be any protocol computing fn on

inputs drawn from μn with probability of error less than ρ. Then by Theorem 2.4,
there exists a protocol τ1 computing f on inputs drawn from μ with error at most
ρ with CC(τ1) ≤ CC(π) and ICi

μ(τ1) ≤ 2CC(π)/n. Since μ is a product distribution,
we have that ICo

μ(π) = ICi
μ(π). Next, applying Theorem 2.2 to the protocol τ1 gives

that there must exist a protocol τ2 computing f on inputs drawn from μ with error
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at most ρ+ α and

CC(τ2) ≤ O
(
ICo

μ(τ1) log(CC(τ1)/α)/α
2
)

= O

(
CC(π) log(CC(π)/α)

nα2

)

This proves Theorem 2.6.
Proof of the XOR lemma. The proof for Theorem 2.8 (XOR lemma for distribu-

tional complexity) is very similar. First, we show an XOR analogue of Theorem 2.4
in section 6.

Theorem 5.1. For every distribution μ, there exists a protocol τ computing f
with probability of error ρ over the distribution μ with CC(τ) ≤ Dμn

ρ (f+n) + 2 logK

such that if τ ′ is the protocol that is the same as τ but stops running after Dμn

ρ (f+n)

message bits have been sent, then ICi
μ(τ

′) ≤ 2Dμn

ρ (f+n)

n .
Now let π be any protocol computing f+n on inputs drawn from μn with proba-

bility of error less than ρ. Then by Theorem 5.1, there exists a protocol τ1 computing
f on inputs drawn from μ with error at most ρ with CC(τ1) ≤ CC(π) + 2 logK and
such that if τ ′1 denotes the first CC(π) bits of the message part of the transcript,
ICi

μ(τ
′
1) ≤ 2CC(π)/n. Next, applying Theorem 2.1 to the protocol τ ′1 gives that there

must exist a protocol τ ′2 simulating τ ′1 on inputs drawn from μ with error at most
ρ+ α and

CC(τ ′2) ≤ O

(√
CC(τ ′1)IC

i
μ(τ ′1) log(CC(τ

′
1)/α)/α

)

= O
(√

CC(π)CC(π)/n log(CC(π)/α)/α
)

= O

(
CC(π) log(CC(π)/α)/α√

n

)
.

Finally we get a protocol for computing f by first running τ ′2 and then running
the last 2 logK bits of π. Thus we must have that

Dμ
ρ+α(f) ≤ O

(
CC(π) log(CC(π)/α)/α√

n

)
+ 2 logK.

This finishes the proof of Theorem 2.8.
The proof of Theorem 2.9 is analogous and is omitted here.

6. Reduction to small internal information cost. We now prove Theo-
rems 2.4 and 5.1, showing that the existence of a protocol with communication com-
plexity C for fn (or f+n) implies a protocol for f with information content roughly
C/n.

Theorem 2.4 1 (restated). For every μ, f, ρ there exists a protocol τ computing
f on inputs drawn from μ with probability of error at most ρ and communication at

most Dμn

ρ (fn) such that ICi
μ(τ) ≤

2Dμn

ρ (fn)

n .
Theorem 5.1 1 (restated). For every distribution μ, there exists a protocol

τ computing f with probability of error ρ over the distribution μ with CC(τ) ≤
Dμn

ρ (f+n) + 2 logK such that if τ ′ is the protocol that is the same as τ but stops

running after Dμn

ρ (f+n) message bits have been sent, then ICi
μ(τ

′) ≤ 2Dμn

ρ (f+n)

n .
The key idea involved in proving the above theorems is a way to split dependencies

between the inputs that arose in the study of lower bounds for the communication
complexity of disjointness and in the study of parallel repetition [18, 27, 28].
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Protocol τ
Public Randomness Phase :

1. The players sample j, w−j ∈
R
J,W−J using public randomness.

Private Randomness Phase :
1. Px sets xj = x, Py sets yj = y.
2. For every i �= j, Px samples Xi conditioned on the value of w−j .
3. For every i �= j, Py samples Yi conditioned on the value of w−j .
4. The players simulate π on the inputs x1, . . . , xn, y1, . . . , yn and output

the jth output of π.

Fig. 5. A protocol simulating π.

Proof. Fix μ, f, n, ρ as in the statement of the theorems. We shall prove The-
orem 2.4 first. Theorem 5.1 will easily follow by the nature of our proof. To prove
Theorem 2.4, we show how to use the best protocol for computing fn to get a protocol
with small information content computing f . Let π be a deterministic protocol with
communication complexity Dμn

ρ (fn) computing fn with probability of error at most ρ.
Let (X1, Y1), . . . , (Xn, Yn) denote random variables distributed according to μn.

Let π(Xn, Y n) denote the random variable of the transcript (which is just the con-
catenation of all messages, since this is a deterministic protocol) that is obtained by
running the protocol π on inputs (X1, Y1), . . . , (Xn, Yn). We define random variables
W = W1, . . . ,Wn where each Wj takes a value in the disjoint union X � Y so that
each Wj = Xj with probability 1/2 and Wj = Yj with probability 1/2. Let W−j

denote W1, . . . ,Wj−1,Wj+1, . . . ,Wn.
Our new protocol τ shall operate as in Figure 5. Note the distinction between

public and private randomness. This distinction make a crucial difference in the
definition of information content, as making more of the randomness public reduces
the information content of a protocol.

The probability that the protocol τ makes an error on inputs sampled from μ is at
most the probability that the protocol π makes an error on inputs sampled from μn. It
is also immediate that CC(τ) = CC(π). All that remains is to bound the information
content ICi

μ(τ). We do this by relating it to the communication complexity of π.
To simplify notation, below we will use π to denote π(X,Y ) when convenient.

Dμn

ρ (fn) ≥ CC(π) ≥ I(X1 · · ·XnY1 · · ·Yn;π|W )

≥
n∑

j=1

I(XjYj ;π|W ) = nI(XJYJ ;π|WJ),

where the last inequality follows from Proposition 4.6. Next observe that the variables
JW−J are independent of XJ , YJ ,WJ . Thus we can write

I(XJYJ ;π|JW ) = I(XJYJ ;π|JWJW
−J) + I(XJYJ ; JW

−J |WJ)

= I(XJYJ ; JW
−Jπ|WJ )

= I(XY ; JW−Jπ|WJ )

=
I(XY ; JW−Jπ|XJ) + I(XY ; JW−Jπ|YJ )

2

=
I(Y ; JW−Jπ|XJ ) + I(X ; JW−Jπ|YJ )

2
,
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Protocol γ
Public Randomness Phase :

1. The players sample j, w−j ∈
R
J,W−J using public randomness.

Private Randomness Phase :
1. Px sets xj = x, Py sets yj = y.
2. For every i �= j, Px samples Xi conditioned on the value of w−j .
3. For every i �= j, Py samples Yi conditioned on the value of w−j .
4. The players simulate π on the inputs x1, . . . , xn, y1, . . . , yn to compute

z ∈ ZK .
5. Px computes

∑
i�=j,wi=yi

f(xi, wi) and sends this sum to Py

6. Py outputs the value of the function as z −
∑

i�=j,wi=yi
f(xi, wi) −∑

i�=j,wi=xi
f(wi, yi).

Fig. 6. A protocol simulating π.

where the last equality follows from the fact that XJ determines X and YJ determines
Y . This last quantity is simply the information content of τ . Thus we have shown
that CC(π) ≥ (n/2)ICi

μ(τ) as required.
Remark 6.1. The analysis above can be easily improved to get the bound

ICi
μ(τ) ≤ CC(π)/n by taking advantage of the fact that each bit of the transcript

gives information about at most one of the players’ inputs, but for simplicity we do
not prove this here.

This completes the proof for Theorem 2.4. The proof for Theorem 5.1 is very
similar. As above, we let π denote the best protocol for computing f+n on inputs
sampled according to μn. Analogously to τ as above, we define the simulation γ as
in Figure 6.

As before, the probability that the protocol γ makes an error on inputs sampled
from μ is at most the probability that the protocol π makes an error on inputs sampled
from μn, since there is an error in γ if and only if there is an error in the computation
of z. It is also immediate that CC(γ) = CC(π) + 2 logK.

Let γ′(X,Y ) denote the concatenation of the public randomness and the messages
of γ up to the computation of z. Then, exactly as in the previous case, we have the
bound

ICi
μ(γ

′) ≤ 2CC(π)/n.

This completes the proof.

7. Compression according to the internal information cost. We now
prove our main technical theorem, Theorem 2.1.

Theorem 2.1 2 (restated). For every distribution μ, every protocol π, and every
ε > 0, there exist functions πx, πy, and a protocol τ such that |πx(X, τ(X,Y )) −
π(X,Y )| < ε, Pr[πx(X, τ(X,Y )) �= πy(Y, τ(X,Y ))] < ε, and

CC(τ) ≤ O

(√
CC(π) · ICi

μ(π)
log(CC(π)/ε)

ε

)
.

7.1. A proof sketch. Here is a high level sketch of the proof. Let μ be a
distribution over X ×Y. Let π be a public coin protocol that does some computation
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using the inputs X,Y drawn according to μ. Our goal is to give a protocol τ that
simulates π on μ such that5

CC(τ) = O

(√
CC(π) · ICi

μ(π) log(CC(π))

)
.

For the sake of simplicity, here we assume that the protocol π has no public
randomness. π then specifies a protocol tree which is a binary tree of depth CC(π)
where every nonleaf node w is owned by one of the players, whose turn it is to speak
at this node. Each nonleaf node has a “0 child” and a “1 child.” For every such node
w in the tree and every possible message b ∈ {0, 1} , the X player gets input x and
uses this to define Ow,x(b) as the probability in π that, conditioned on reaching the
node w and the input being x, the next bit will be b. The Y player defines Ow,y(b)
analogously. Note that if w is owned by the X player, then Ow,x(b) is exactly the
correct probability with which b is transmitted in the real protocol.

For every such node w, the players use public randomness to sample a shared
random number κw ∈ [0, 1] for every nonleaf node w in the tree. The X player uses
these numbers to define the child Cx(w) for every node w as follows: if Ow,x(1) < κw,
Cx(w) is set to the 0 child of w, and is set to the 1 child otherwise. The Y Player
does the same using the values Ow,y(1) (but the same κw) instead.

Now let v0, . . . , vCC(π) be the correct path in the tree. This is the path where
every subsequent node was sampled by the player that owned the previous node: for
every i,

vi+1 =

⎧⎨
⎩
Cx(vi) if X player owns vi,

Cy(vi) if Y player owns vi.

Then vCC(π) has the same distribution as a leaf in π was supposed to have, and the
goal of the players will be to identify vCC(π) with small communication.

In order to do this, the X player will compute the sequence of nodes vx0 , . . . , v
x
CC(π)

by setting vxi+1 = Cx(v
x
i ). Similarly, the Y player computes the path vy0 , . . . , v

y
CC(π)

by setting vyi+1 = Cy(v
y
i ). Observe that if these two paths agree on the first k nodes,

then they must be equal to the correct path up to the first k nodes.
So far, we have not communicated at all. Now the parties communicate to find

the first index i for which vxi �= vyi . If vi−1 = vxi−1 = vyi−1 was owned by the X player,
the parties reset the ith node in their paths to vxi . Similarly, if vi−1 was owned by
the Y player, the parties reset their ith node to be vyi . In this way, they keep fixing
their paths until they have computed the correct path.

Thus the communication complexity of the new protocol is bounded by the num-
ber of mistakes times the communication complexity of finding a single mistake. Every
path in the tree is specified by a CC(π)-bit string, and finding the first inconsistency
reduces to the problem of finding the first difference in two CC(π)-bit strings. A simple
protocol of Feige et al. [9] (based on hashing and binary search) gives a protocol for
finding this first inconsistency, with communication only O(logCC(π)). We describe
and analyze this protocol in Appendix C. In section 7.2 we show how to bound the

5We identify the communication complexity of the protocols π, τ with their expected communi-
cation under μ, as by adding a small error, the two can be related using an easy Markov argument.
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Protocol πr

Sampling Phase :
1. For every nonleaf node w in the tree, the player who owns w samples

a child according to the distribution given by her input and the public
randomness r. This leaves each player with a subtree of the original
protocol tree, where each node has out-degree 1 or 0 depending on
whether or not it is owned by the player.

Path Finding Phase :
1. Set v to be the root of the tree.
2. If v is a leaf, the computation ends with the value of the node. Else,

the player to whom v belongs communicates one bit to the other
player to indicate which of the children was sampled.

3. Set v to the sampled child and return to the previous step.

Fig. 7. πr restated.

expected number of mistakes on the correct path in terms of the information content
of the protocol. We show that if we are at node vi in the protocol and the next bit has
ε information, then the probability that Pr[Cx(vi) �= Cy(vi)] ≤

√
ε. Since the total

information content is ICi
μ(π), we can use the Cauchy–Schwarz inequality to bound

the expected number of mistakes by
√
CC(π)ICi

μ(π).

7.2. The actual proof. In order to prove Theorem 2.1, we consider the protocol
tree T for πr, for every fixing of the public randomness r. If R is the random variable
for the public randomness used in π, we have the following claim.

Claim 7.1. ICi
μ(π) = ER

[
ICi

μ(πR)
]

Proof.

ICi
μ(π) = I(π(X,Y );X |Y ) + I(π(X,Y );Y |X)

= I(RπR(X,Y );X |Y ) + I(RπR(X,Y );Y |X)

= I(R;X |Y ) + I(R;Y |X) + I(πR(X,Y );X |Y R) + I(πR(X,Y );Y |XR)

= I(πR(X,Y );X |Y R) + I(πR(X,Y );Y |XR)

= E
R

[
ICi

μ(πR)
]

It will be convenient to describe protocol πr in a nonstandard, yet equivalent way
in Figure 7.

For some error parameters β, γ, we define a randomized protocol τβ,γ that will
simulate π and use the same protocol tree. The idea behind the simulation is to avoid
communicating by guessing what the other player’s samples look like. The players
shall make many mistakes in doing this, but they shall then use Lemma 4.14 to correct
the mistakes and end up with the correct transcript. Our simulation is described in
Figure 8.

Define πx(x, τβ,γ(x, y)) (resp., πy(y, τβ,γ(x, y))) to be a leaf of the final path com-
puted by Px (resp., Py) in the protocol τβ,γ (see Figure 8). The definition of the
protocol τβ,γ implies immediately the following upper bound on its communication
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Protocol τβ,γ

Public Sampling Phase :
1. Sample r according to the distribution of the public randomness in

π.
Correlated Sampling Phase :

1. For every nonleaf node w in the tree, let κw be a uniformly random
element of [0, 1] sampled using public randomness.

2. On input x, y, player Px (resp., Py) defines the tree Tx (resp., Ty) in
the following way: for each node w, Px (resp., Py) includes the
edge to the left child if Pr[πr(X,Y ) reaches the left child|πr(X,Y )
reaches w and X = x] > κw (resp., if Pr[πr(X,Y ) reaches the left
child|πr(X,Y ) reaches w and Y = y] > κw). Otherwise, the right
child is picked.

Path Finding Phase :
1. Each of the players computes the unique path in their trees that

leads from the root to a leaf. The players then use Lemma 4.14,
communicating O(log(n/β)) bits to find the first node at which their
respective paths differ, if such a node exists. The player that does
not own this node corrects this edge and recomputes his path. They
repeatedly correct their paths in this way

√
CC(π) · ICi

μ(π)/γ times.

Fig. 8. The simulation of π.

complexity:

(7.1) CC(τβ,γ) = O

(√
CC(π) · ICi

μ(π) log(CC(π)/β)/γ

)
.

Let V = V0, . . . , VCC(π) denote the “right path” in the protocol tree of τβ,γ . That
is, every i, Vi+1 = 0 if the left child of V≤i is sampled by the owner of V≤i and
Vi+1 = 1 otherwise. Observe that this path has the right distribution, since every
child is sampled with exactly the right conditional probability by the corresponding
owner. That is, we have the following claim.

Claim 7.2. For every x, y, r, the distribution of V |xyr as defined above is the
same as the distribution of the sampled transcript in the protocol π.

This implies in particular, that

I(X ;V |rY ) + I(Y ;V |rX) = ICi
μ(πr) .

Given two fixed trees Tx, Ty as in the above protocol, we say there is a mistake at
level i if the out-edges of Vi−1 are inconsistent in the trees. We shall first show that
the expected number of mistakes that the players make is small.

Lemma 7.3. E [# of mistakes in simulating πr|r] ≤
√
CC(π) · ICi

μ(πr).
Proof. For i = 1, . . . ,CC(π), we denote by Cir the indicator random variable for

whether or not a mistake occurs at level i in the protocol tree for πr, so that the

number of mistakes is
∑CC(π)

i=1 Cir .
We shall bound E [Cir] for each i. A mistake occurs at a vertex w at depth

i exactly when Pr[Vi+1 = 0|x ∧ V≤i = w] ≤ κw < Pr[Vi+1 = 0|y ∧ V≤i = w] or
Pr[Vi+1 = 0|y ∧ V≤i = w] ≤ κw < Pr[Vi+1 = 0|x ∧ V≤i = w]. Thus a mistake occurs
at v≤i with probability at most |(Vi|xv<ir) − (Vi|yv<ir)|.
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If v<i is owned by Px, then Vi|xv<ir has the same distribution as Vi|xyv<ir; If
v<i is owned by Py, then Vi|yv<ir has the same distribution as Vi|xyv<ir. Using
Proposition 4.8 and Proposition 4.9, we have

E [Cir]

≤ E
xyv<i∈R

XY V<i

[|(Vi|xv<ir)− (Vi|yv<ir)|]

≤ E
xyv<i∈R

XY V<i

[max{|(Vi|xyv<ir) − (Vi|yv<ir)| , |(Vi|xyv<ir) − (Vi|xv<ir)|]

≤ E
xyv<i∈R

XY V<i

[√
D (Vi|xyv<ir||Vi|yv<ir) + D (Vi|xyv<ir||Vi|xv<ir)

]
(By Proposition 4.8)

≤
√

E
xyv<i∈R

XY V<i

[D (Vi|xyv<ir||Vi|yv<ir) + D (Vi|xyv<ir||Vi|xv<ir)]

(by convexity)

=
√
I(X ;Vi|Y V<ir) + I(Y ;Vi|XV<ir)

(by Proposition 4.9).

Finally we apply the Cauchy–Schwarz inequality to conclude that

E

⎡
⎣CC(π)∑

i=1

Cir

⎤
⎦ =

CC(π)∑
i=1

E [Cir ]

≤

√√√√CC(π)

CC(π)∑
i=1

E [Cir]
2

≤

√√√√CC(π)

CC(π)∑
i=1

I(X ;Vi|Y V<ir) + I(Y ;Vi|XV<ir)

=
√
CC(π)

(
I(X ;V CC(π)|Y r) + I(Y ;V CC(π)|Xr)

)
=
√
CC(π) · ICi

μ(πr).

We then get that overall the expected number of mistakes is small.
Lemma 7.4. E [# of mistakes in simulating π] ≤

√
CC(π) · ICi

μ(π).
Proof.

E [# of mistakes in simulating π] = E
R
[# of mistakes in simulating πR]

≤ E
R

[√
CC(π) · ICi

μ(πR)

]
≤
√
E
R
[CC(π) · ICi

μ(πR)]

=
√
CC(π) · ICi

μ(π).

Lemma 7.5. The distribution of the leaf sampled by τβ,γ is γ + β

√
CC(π)·ICi

μ(π)

γ —
close to the distribution of the leaf sampled by π.
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Proof. We show that in fact the probability that both players do not finish the

protocol with the leaf VCC(π) is bounded by γ + β

√
CC(π)·ICi

μ(π)

γ . This follows from a
simple union bound—the leaf VCC(π) can be missed in two ways: either the number of

mistakes on the correct path is larger than
√
CC(π) · ICi

μ(π)/γ (probability at most
γ by Lemma 7.4 and Markov’s inequality) or our protocol fails to detect all mistakes
(for each mistake this happens with probability β).

We set β = γ2/CC(π). Then, since CC(π) ≥ ICi
μ(π), we get that the protocol

errs with probability at most ρ + 2γ. On the other hand, by (7.1), the communi-
cation complexity of the protocol is at most O(

√
CC(π) · ICi

μ(π) log(CC(π)/β)/γ) =

O(
√

CC(π) · ICi
μ(π) log(CC(π)/γ)/γ). Setting ε = 2γ proves the theorem.

8. Compression according to the external information cost. In this sec-
tion we argue how to compress protocols according to the information learnt by an
observer watching the protocol. We shall prove Theorem 2.6.

8.1. A proof sketch. We start with a rough proof sketch. Given a function
f , distribution μ, and protocol π, we want to come up with a protocol τ simulating
π such that CC(τ) = Õ(ICo

μ(π)). We assume that π is a private coin protocol, in
this proof sketch, for simplicity. For every nonleaf node w we denote by Ow the
probability of transmitting a 1 at the node w conditioned on reaching that node
(without taking into consideration the actual values of the inputs to the protocol).
We shall write Ow,x, Ow,y to denote this probability conditioned on a particular fixing
of x or y, and conditioned on the event of reaching w during the run of the protocol.
As a technical condition, we will assume that for every w, Ow,x, Ow,y ∈ 1/2 ± β for
β = 1/ polylog(CC(π)). This condition can be achieved for example by re-encoding π
so that each party, instead of sending a bit b, sends polylog(CC(π)) random bits such
that their majority is b.

For every node w owned by the X player, we define the divergence at w, denoted
by Dw as D (Ow,x||Ow), where D (p||q) = p log(p/q)+(1−p) log((1−p)/(1−q)) equals
the divergence (also known as the Kullback–Leibler distance) between the p-biased
coin and the q-biased coin. Given a node v, we define Bv to be the set of descendants
w of v such that if we sum up Dw′ for all intermediate nodes w′ on the path from v
to w we get a total < β but adding Dw makes the total at least β or w is a leaf. We
define Bv to be the distribution over Bv that is induced by following the probabilities
Ow′ along the path. Note that this distribution is known to both parties. We define
Bvx to be the distribution obtained by assigning the probability of an edge according
to Ow,x for nodes owned by the x player and Ow for nodes owned by the y player.
Similarly we define the distribution Bvy.

The protocol proceeds as follows (initially v is set to the root of the tree, t below
is some large constant).

1. Both parties use their shared randomness to obtain a random element w
according to the distribution Bv. (This involves first sampling a random leaf
and then using binary search to find the first location in which the divergence
surpasses β.)

2. The X player sends a bit a1 that equals 1 with probability min{1, Bvx(w)/
(tBv(w)}.

3. The Y player sends a bit a2 that equals 1 with probability min{1, Bvy(w)/
(tBv(w)}.

4. If a1 = a2 = 1, then they set v = w. If v is a leaf they end the protocol,
otherwise go back to step 1.
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To get a rough idea why this protocol makes sense, consider the case that all the
nodes in Bv are two levels below v, with the first node (i.e., v) owned by the X player,
and the nodes in the intermediate level owned by the Y player. For a node w ∈ Bv,
let Bvxy(w) be the true probability of arriving at w, and let B̃(w) = Bv(w) be the

estimated probability. Fixing w, we write B(w) = B1B2 and B̃(w) = B̃1B̃2, where
Bi denotes the true probability that step i is taken according to w, and B̃i denotes
this probability as estimated by an observer who does not know x, y.

The probability that w is output at the end of step 1 is B̃1B̃2. Now assume that
the threshold t is set high enough so that we can assume that tBv(w) > Bvx(w), Bvy(y)
with high probability. In this case the probability that w is accepted equals

(8.1) Pr[a1 = 1]Pr[a2 = 1] =

(
B1B̃2

tB̃1B̃2

)(
B̃1B2

tB̃1B̃2

)
=

B1B2

t2B̃1B̃2

;

thus the total probability that w is output is B̃1B̃2 times (8.1) which is exactly its
correct probability B1B2 divided by t2, and hence we get an overhead of t2 steps, but
output the right distribution over w.

8.2. The actual proof. We shall compress the protocol into two steps. In the
first step, we shall get a protocol simulating π whose messages are smoothed out in
the sense that every bit in the protocol is relatively close to being unbiased, even
conditioned on every fixing of the inputs and the prior transcript. We shall argue
that this process does not change the typical divergence of bits in the protocol, a fact
that will then let us compress such a protocol.

For every prefix of the transcript w that includes i ≥ 1 message bits, and every
pair of inputs x, y we define the following distributions on prefixes of transcripts that
include i+ 1 message bits:

Ow(a) = Pr[π(X,Y )≤i+1 = a≤i+1|π(X,Y )≤i = w];

Ow,x(a) =

⎧⎪⎨
⎪⎩
Pr[π(X,Y )≤i+1 = a|π(X,Y )≤i = w,X = x]

if the node w is owned by the x player,

Pr[π(X,Y )≤i+1 = a|π(X,Y )≤i = w] else;

Ow,y(a) =

⎧⎪⎨
⎪⎩
Pr[π(X,Y )≤i+1 = a|π(X,Y )≤i = w, Y = y]

if the node w is owned by the y player,

Pr[π(X,Y )≤i+1 = a|π(X,Y )≤i = w] else;

Ow,x,y(a) = Pr[π(X,Y )≤i+1 = a|π(X,Y )≤i = w,X = x, Y = y].

Next we define the following measures of information.
Definition 8.1 (conditional divergence). Given a protocol π, a prefix v of the

transcript, and j ∈ [CC(v)], we define the jth step divergence cost as

Dπ
x,j(v)

def
= D

(
Ov≤j ,x||Ov≤j

)
,

Dπ
y,j(v)

def
= D

(
Ov≤j ,y||Ov≤j

)
.

We define the divergence cost for the whole prefix as the sum of the step divergence
costs:

Dπ
x(v)

def
=

CC(v)∑
j=1

Dπ
x,j(v), Dπ

y (v)
def
=

CC(v)∑
j=1

Dπ
y,j(v).
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We denote

Dπ
xy(v)

def
= Dπ

x(v) + Dπ
y (v).

We have the following lemma.
Lemma 8.2. For any interval [i, i+ 1, . . . , j] of bits from the transcript, and any

prefix v,

E
X,Y,π(X,Y )|π(X,Y )<i=v

[
j∑

r=i

Dπ
X,r(π(X,Y )) + Dπ

Y,r(π(X,Y ))

]

≤ I(XY ;π(X,Y )≤j |π(X,Y )<i = v).

Proof. By linearity of expectation, the left-hand side is equal to

j∑
r=i

E
X,Y,π(X,Y )|π(X,Y )<i=w

[
Dπ

X,r(π(X,Y )) + Dπ
Y,r(π(X,Y ))

]
.

Now consider any fixing of π(X,Y )<r = w. Suppose without loss of generality
that for this fixing it is the x-player’s turn to speak in π. Then

EX,Y |π(X,Y )<r=w[D
π
Y,j(π(X,Y ))]

is 0, since Ow,y andOw are the same distribution. By Proposition 4.9, the contribution
of the other term under this fixing is

E
X,Y,π(X,Y )|π(X,Y )<r=w

[
Dπ

X,r(π(X,Y ))
]
= I(X ;π(X,Y )r|π(X,Y )<r = w)

≤ I(XY ;π(X,Y )r|π(X,Y )<r = w).

Thus the entire sum is bounded by

j∑
r=i

I(XY ;π(X,Y )r|π(X,Y )<r, π(X,Y )<i = v) = I(XY ;π(X,Y )≤j |π(X,Y )<i = v)

by the chain rule for mutual information.
Definition 8.3 (smooth protocols). A protocol π is β-smooth if for every

x, y, i, vi,

Pr[π(x, y)i+1 = 1|π(x, y)≤i = vi] ∈ [1/2− β, 1/2 + β].

We show that every protocol can be simulated by a smooth protocol whose typical
divergence cost is similar to the original protocol.

Lemma 8.4 (smooth simulation). There exists a constant � > 0 such that for
every protocol π and distribution μ on inputs X,Y , and all 0 < β, γ < 1 there exists
a β-smooth protocol τ such that

• |τ(X,Y )− π(X,Y )| < γ,
• CC(τ) = �CC(π) log(CC(π)/γ)/β2, and
• PrX,Y [Dτ

XY (τ(X,Y )) > ICo
μ(π)/γ] ≤ 2γ .

The main technical part of the proof will be to show how to compress such a
smooth protocol. We shall prove the following theorem.

Theorem 8.5. There exists a constant k such that for every ε > 0, if π is a
protocol such that for every x, y, v, i we have that

Pr[π(x, y)i+1 = 1|v≤i] ∈
[
1

2
− 1

k log(CC(π)/ε)
,
1

2
+

1

k log(CC(π)/ε)

]
,
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then for every distribution μ on inputs X,Y , there exists a protocol τ with communi-
cation complexity Q and a function p such that for every x, y, the expected statistical
distance

E
X,Y

[|p(τ(X,Y ))− π(X,Y )|] ≤ Pr

[
Dπ

XY (π(X,Y )) >
εQ

k log(CC(π)/ε)

]
+ kε.

Before proving Lemma 8.4 and Theorem 8.5, we show how to use them to prove
Theorem 2.2.

Proof of Theorem 2.2. We set γ = ε = α/8k, β = 1
k log(CC(π)/γ) . Lemma 8.4 gives a

β-smooth simulation τ1 of π with communication complexity CC(π)·polylog(CC(π)/α)),
that is γ close to the correct simulation. Next set Q =

ICo
μ(π)·k log(CC(π)/γ)

γ2 . Then the

probability that the divergence cost of a transcript of τ1 exceeds γQ
k log(CC(π)/γ) is at

most 2γ. Thus, we can apply Theorem 8.5 to get a new simulation of π with to-
tal error 2γ + kγ ≤ α. The communication complexity of the final simulation is
O(ICo

μ(π) · log(CC(π)/α)/α2).
Next we prove the lemma.
Proof of Lemma 8.4. Every time a player wants to send a bit in π, she instead

sends k = � log(CC(π)/γ)β2 bits which are each independently and privately chosen to be

the correct value with probability 1/2 + β. The receiving player takes the majority
of the bits sent to reconstruct the intended transmission. The players then proceed
assuming that the majority of the bits was the real sampled transmission.

By the Chernoff bound, we can set � to be large enough so that the probability
that any transmission is received incorrectly is at most γ

CC(π) . By the union bound

applied to each of the CC(π) transmissions, we have that except with probability γ, all
transmissions are correctly received. Thus the distribution of the simulated transcript
is γ-close to the correct distribution. All that remains is to bound the probability of
having a large divergence cost.

We denote by R the public randomness used in both protocols, by Vi the ith
intended transmission in the protocol τ , and by Wi the block of k bits used to
simulate the transmission of Vi. We use Mi to denote the majority of the bits
Wi (which is the actual transmission). For every i, let Gi denote the event that
V1, . . . , Vi = M1, . . . ,Mi, namely, that the first i intended transmissions occurred as
intended (set G0 to be the event that is true always). Then for each i, conditioned
on the event Gi−1, we have that X,Y, Vi, R,M1, . . . ,Mi−1 have the same distribution
as X,Y, π(X,Y )i, R, π(X,Y )1, . . . , π(X,Y )i−1. In particular, this implies that

I(XY ;Vi|rm1, . . . ,mi−1Gi−1) = I(XY ;π(X,Y )i|π(X,Y )≤i−1 = rm1, . . . ,mi−1).
(8.2)

On the other hand,

I(XY ;Wi|rm1, . . . ,mi−1Gi−1)

≤ I(XY ;WiVi|rm1, . . . ,mi−1Gi−1)

= I(XY ;Vi|rm1, . . . ,mi−1Gi−1) + I(XY ;Wi|rm1, . . . ,mi−1ViGi−1)

= I(XY ;Vi|rm1, . . . ,mi−1Gi−1).(8.3)

In the event Gi−1, after fixing Vi, R,M1, . . . ,Mi−1, we have that Wi is independent
of the inputs XY . Thus (8.2) and (8.3) imply that

I(XY ;π(X,Y )i|π(X,Y )≤i−1 = rm1, . . . ,mi−1) ≥ I(XY ;Wi|rm1, . . . ,mi−1Gi−1).
(8.4)
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Let D1, D2, . . . , be random variables defined as follows. For each i, set

Di =

{
0 if the event Gi−1 does not hold,∑k

j=1 D
τ
X,ik+j(τ(X,Y )) + Dτ

Y,ik+j(τ(X,Y )) otherwise.

Thus we have that conditioned on the event GCC(π),
∑CC(π)

i=1 Di is equal to
Dτ

XY (τ(X,Y )). On the other hand, E[Di] = Pr[Gi]E [Di|Gi] ≤ E [Di|Gi]. But by
(8.4) and Lemma 8.2, E [Di|Gi] can be bounded by EX,Y [Dπ

X,i(π(X,Y )) +

Dπ
Y,i(π(X,Y ))]. So by linearity of expectation, E[

∑CC(π)
i=1 Di] ≤ EX,Y [Dπ

XY (π(X,Y ))] =

I(XY ;π(X,Y )) = ICo
μ(π).

Thus, by the union bound,

Pr
X,Y

[Dτ
XY (τ(X,Y )) > ICo

μ(π)/γ] ≤ (1− Pr[GCC(π)]) + Pr

⎡
⎣CC(π)∑

i=1

Di > ICo
μ(π)/γ

⎤
⎦ .

We bound the first term by γ as above, and the second term by γ using Markov’s
inequality.

8.3. Proof of Theorem 8.5. It only remains to prove Theorem 8.5. Set β =
1/k log(CC(π)/ε). We use the fact that the bits in our protocol are close to uniform
to show that the step divergence is at most O(β) for each step.

Proposition 8.6. For every j, Dπ
x,j(v) and Dπ

y,j(v) are bounded by O(β).
Proof. This follows from the fact that all probabilities for each step lie in [1/2−

β, 1/2+ β]. The worst the divergence between two distributions that lie in this range

can be is clearly log(1/2+β
1/2−β ) = log(1 +O(β)) = O(β).

Next, for every prefix v of the transcript, and inputs x, y, we define a subset of
the prefixes of potential transcripts that start with v, Bvxy in the following way: we
include w in Bvxy if and only if for every w′ that is a strict prefix of w,

max

⎧⎨
⎩

CC(w′)∑
j=CC(v)+1

Dπ
x,j(w

′),

‖w′‖∑
j=CC(v)+1

Dπ
y,j(w

′)

⎫⎬
⎭ < β,

and we have that w itself is either a leaf or satisfies

max

⎧⎨
⎩

CC(w)∑
j=CC(v)+1

Dπ
x,j(w),

‖w‖∑
j=CC(v)+1

Dπ
y,j(w)

⎫⎬
⎭ ≥ β.

The set Bvxy has the property that every path from v to a leaf of the protocol tree
must intersect exactly one element of Bvxy, i.e., if we cut all paths at the point where
they intersect Bvxy, we get a protocol tree that is a subtree of the original tree.

We define the distribution Bvxy on the set Bvxy as the distribution on Bvxy

induced by the protocol π: namely, we sample from Bvxy by sampling each subsequent
vertex according to Ow,x,y and then taking the unique vertex of Bvxy that the sampled
path intersects.

Similarly, we define the distribution Bvx on Bvxy, to be the distribution obtained
by following the edge out of each subsequent node w according to the distribution
Ow,x, and the distribution Bvy by following edges according to Ow,y, and finally the
distribution Bv by sampling edges according to Ow.
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Protocol τv,t
1. Both players use public randomness to sample a path according to

π(X,Y )|v and communicate 2 logCC(π) bits to sample an element w of
Bvxy according to the distribution Bv.

2. Px samples a bit a1 which is 1 with probability

min

{
Bvx(w)

tBv(w)
, 1

}
.

3. Py samples a bit a2 which is 1 with probability

min

{
Bvy(w)

tBv(w)
, 1

}
.

4. If both a1 and a2 were 1, they accept w. Else they repeat the protocol.

Fig. 9. The protocol to sample a subsequent part of the transcript.

Observe that for every transcript w, the players can compute the element of
Bvxy that intersects the path w by communicating 2 logCC(π) bits (the computation
amounts to computing the minimum of two numbers of magnitude at most CC(π)).
Given these definitions, we are now ready to describe our simulation protocol. The
protocol proceeds in rounds. In each round the players shall use rejection sampling
to sample some consecutive part of the transcript.

8.3.1. A single round. The first protocol, shown in Figure 9 assumes that we
have already sampled the prefix v. We define the protocol for some constant t that
we shall set later.

Observe that the distributions we have defined satisfy the equation(
Bvx

Bv

)(
Bvy

Bv

)
=

Bvxy

Bv
.(8.5)

This suggests that our protocol should pick a transcript distributed according to
Bvxy. We shall argue that the subsequent prefix of the transcript sampled by the
protocol in Figure 9 cannot be sampled with much higher probability than what it is
sampled with in the real distribution. Let B′

vxy denote the distribution of the accepted
prefix of τv,t.

Claim 8.7 (no sample gets undue attention). For every prefix w,

B′
vxy(w)/Bvxy(w) ≤ 1 + 2 exp

(
−Ω

(
(log t−O(β))2

β

))
.

We shall also show that the expected communication complexity of this protocol
is not too high.

Claim 8.8 (small number of rounds). The expected communication complexity
of τv is at most

O(t2)

1− exp
(
−Ω

(
(log t−O(β))2

β

)) .D
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Claims 8.7 and 8.8 will follow from the following claim.
Claim 8.9.

Pr
w∈

R
Bvxy

[
Bvx(w)

Bv(w)
≥ t

]
≤ exp

(
−Ω

(
(log t−O(β))2

β

))
,

Pr
w∈

R
Bvxy

[
Bvy(w)

Bv(w)
≥ t

]
≤ exp

(
−Ω

(
(log t−O(β))2

β

))
.

Let us first argue that Claim 8.7 follows from Claim 8.9.
Proof of Claim 8.7. Set a to be the function that maps any w ∈ Bvxy to

min{(1/t)Bvx(w)
Bv(w) , 1} · min{(1/t)Bvy(w)

Bv(w) , 1}. Set a′ = (1/t)Bvx(w)
Bv(w) (1/t)

Bvy(w)
Bv(w) . Then

clearly a′(w) ≥ a(w) for every w. Applying (8.5), we get

a′ = (1/t2)

(
Bvx

Bv

)(
Bvy

Bv

)
= (1/t2)

Bvxy

Bv
.

Thus Bvxy = βa′ · Bv for some constant β. By Proposition B.3, applied to a′, a,
and the distributions D = Bvxy, D

′ = B′
vxy, we have that for every w,

B′
vxy(w)

Bvxy(w)
≤ 1

1− Prw∈
R
Bvxy [a

′(w) > a(w)]
.

On the other hand, by the union bound and Claim 8.9,

Pr
w∈

R
Bvxy

[a′(w) > a(w)] ≤ Pr
w∈

R
Bvxy

[
Bvx(w)

Bv(w)
> t ∨ Bvy(w)

Bv(w)
> t

]

≤ 2 exp

(
−Ω

(
(log t−O(β))2

β

))
.

Since 1/(1− z) ≤ 1 +O(z) for z ∈ (0, 1/10), we get Claim 8.7.
Now we show Claim 8.8 assuming Claim 8.9.
Proof of Claim 8.8. We shall use Proposition B.4. We need to estimate the

probability that the first round of τv,t accepts its sample. This probability is exactly

∑
w∈Bvxy

Bv(w)min

{
(1/t)

Bvx(w)

Bv(w)
, 1

}
·min

{
(1/t)

Bvy(w)

Bv(w)
, 1

}
.

Let A ⊂ Bvxy denote the set {w : Bvx(w)
Bv(w) ≤ t∧ Bvy(w)

Bv(w) ≤ t}. Then we see that the

above sum can be lower bounded:

∑
w∈Bvxy

Bv(w)min

{
(1/t)

Bvx(w)

Bv(w)
, 1

}
·min

{
(1/t)

Bvy(w)

Bv(w)
, 1

}

≥ (1/t2)
∑
w∈A

Bv(w)

(
Bvx(w)

Bv(w)

)(
Bvy(w)

Bv(w)

)
= (1/t2)

∑
w∈A

Bvxy,

where the last equality follows from (8.5).

Finally, we see that Claim 8.9 implies that
∑

w∈ABvxy ≥ 1−exp(−Ω( (log t−O(β))2

β )).
Proposition B.4 then gives the bound we need.
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Next we prove Claim 8.9. To do this we shall need to use a generalization of
Azuma’s inequality, which we prove in Appendix A.

Proof of Claim 8.9. Let W be a random variable distributed according to Bvxy.
Set ZCC(v)+1, . . . , ZCC(π) to be real valued random variables such that if i ≤ CC(W ),

Zi = log

(
Ow≤i−1,x(w≤i)

Ow≤i−1
(w≤i)

)
.

If i > CC(W ), set Zi = 0. Observe that E [Zi|w≤i−1] = Dπ
x,i(w). We also have

that

CC(π)∑
i=CC(v)+1

Zi =

CC(π)∑
i=CC(v)+1

log

(
Ow≤i−1,x(w≤i)

Ow≤i−1
(w≤i)

)

= log

(
Bvx(w)

Bv(w)

)
.(8.6)

Next set Ti = Zi − E [Zi|Zi−1, . . . , Z1]. Note that E [Ti|Ti−1, . . . , T1] = 0 (in fact
the stronger condition that E [Ti|Zi−1, . . . , Z1] = 0 holds). For every w ∈ Bvxy, we
have that

sup(Ti|w≤i−1)

≤ max

{
log

(
Pr[π(X,Y )i = 0|w≤i−1x]

Pr[π(X,Y )i = 0|w≤i−1]

)
, log

(
Pr[π(X,Y )i = 1|w≤i−1x]

Pr[π(X,Y )i = 1|w≤i−1]

)}
,

inf(Ti|w≤i−1)

≥ min

{
log

(
Pr[π(X,Y )i = 0|w≤i−1x]

Pr[π(X,Y )i = 0|w≤i−1]

)

−Dπ
x,i(w), log

(
Pr[π(X,Y )i = 1|w≤i−1x]

Pr[π(X,Y )i = 1|w≤i−1]

)
− Dπ

x,i(w)

}
.

By Proposition 4.8 and using the fact that π(x, Y ) = 1 ∈ [1/2 − β, 1/2 + β] we
can bound

sup(Ti|w≤i−1) ≤ log

⎛
⎝1/2− β +

√
Dπ

x,i(w)

1/2− β

⎞
⎠

= log
(
1 +O

(√
Dπ

x,i(w)
))

= O
(√

Dπ
x,i(w)

)
,(8.7)

inf(Ti|w≤i−1) ≥ log

⎛
⎝ 1/2− β

1/2− β +
√
Dπ

x,i(w)

⎞
⎠− Dπ

x,i(w)

= log
(
1−O

(√
Dπ

x,i(w)
))

= −O
(√

Dπ
x,i(w)

)
,(8.8)

as long as β < 1/10.
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Protocol τt
1. The players publicly sample the public randomness v ∈R R for π.
2. The players repeatedly run τv,t to get a new prefix v. They stop only when

they reach a leaf of the protocol tree for π.

Fig. 10. The protocol to sample a subsequent part of the transcript.

Equations (8.7) and (8.8) imply that for w ∈ Bvxy,

CC(π)∑
i=CC(v)+1

(sup(Ti)− inf(Ti)|w≤i−1)
2 ≤

CC(π)∑
i=CC(v)+1

O(Dπ
x,i(w)) = O(β).(8.9)

For every w,⎛
⎝ CC(π)∑

i=CC(v)+1

Ti

⎞
⎠ |w =

⎛
⎝ CC(π)∑

i=CC(v)+1

Zi

⎞
⎠ |w −

CC(π)∑
i=CC(v)+1

E [Zi|w≤i−1]

=

CC(w)∑
i=CC(v)+1

log

(
Pr[π(x, Y )i = wi|vπ(x, Y )≤i−1 = w≤i−1]

Pr[π(X,Y )i = wi|π(X,Y )≤i−1 = vw≤i−1]

)

−
CC(w)∑

i=CC(v)+1

Dπ
x,i(w)

≥ log

(
Bvx(w)

Bv(w)

)
−O(β),(8.10)

where the last inequality follows from the definition of Bvxy, Proposition 8.6, and
(8.6).

Thus we can use Theorem A.1 to bound

Pr
w∈

R
Bvxy

[
Bvx(w)

Bv(w)
≥ t

]

≤ Pr
w∈

R
Bvxy

[
log

(
Bvx(w)

Bv(w)

)
≥ log t

]

≤ Pr

⎡
⎣ CC(π)∑
i=CC(v)+1

Ti ≥ log t−O(β)

⎤
⎦ (by (8.10))

≤ exp

⎛
⎝−Ω

⎛
⎝ (log t−O(β))2∑CC(π)

i=CC(v)+1(sup(Ti)− inf(Ti)|w≤i−1)2

⎞
⎠
⎞
⎠

≤ exp

(
−Ω

(
(log t− O(β))2

β

))
(by (8.9)).

8.3.2. The whole protocol. Our final protocol for computing f is shown in
Figure 10.

We first argue that our simulation returns the correct answer with decent prob-
ability. We shall actually argue that the probability for any returned transcript does
not increase by too much. To ease notation, let us set

α
def
= exp

(
−Ω

(
(log t−O(β))2

β

))
.
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Set t to be a large enough constant so that

α = exp(−Ω(1/β)) = exp(−Ω(k log(CC(π)/ε))).

Let L denote the random variable of the sampled transcript returned by τt. Then
by Claim 8.7, we get that for every leaf l,

Pr[L = l|xy]
Pr[π(x, y) = l]

≤ (1 + α)CC(π) = exp(O(ε)),(8.11)

and we can set k to be large enough so that Pr[L=l|xy]
Pr[π(x,y)=l] ≤ 1 + ε/2. Thus, the leaf

sampled by our protocol ε/2 is close in statistical distance to the leaf sampled by π.
Observe that if the protocol accepts a leaf l, then the protocol must have involved

s((Dπ
x(l) + Dπ

y (l))/β) rounds, for some constant s.
The expected number of bits communicated in each of these rounds is independent

of l by Proposition B.1, and is t2

1−α by Claim 8.8. Let G be the event that s(Dπ
x(L)+

Dπ
y (L))/β) ≤ εQ. Thus, by Markov’s inequality, conditioned on G, the expected

communication complexity of the protocol is εQ(t2/(1−α)) ≤ dεQ, for some constant
d. By the union bound, we get that the probability that the communication exceeds
Q is bounded by (1−Pr[G])+dε ≤ Pr[Dπ

XY (π(X,Y )) > βεQ/s]+dε. We get our final
protocol by terminating the simulation if the communication exceeds Q. The final
output is thus Pr[Dπ

XY (π(X,Y )) > βεQ/s]+ (d+1)ε close to the correct distribution.
This completes the proof of Theorem 8.5.

9. Open problems and final thoughts. The main problem that remains open
is whether optimal, or near-optimal compression is possible for protocols in the general
setting.

Open problem: Is there a generic way to convert any two-party protocol π over
a general distribution μ into a protocol that uses only ICi

μ(π) polylog(CC(π)) bits of
communication?

An affirmative answer to this problem would immediately yield an optimal direct-
sum theorem for randomized communication complexity, showing that the communi-
cation complexity of fn is Õ(n) times as high as the communication complexity of f .
Curiously enough, it turns out [5] that the converse is true as well, and the problem
above is complete for randomized communication direct sum—one can show that if
there is no such compression scheme, then there is a (partial) function U for which
a direct-sum theorem fails to hold.6 In this function U , each player gets as input a
protocol tree, as well as the probabilities for all the nodes he owns, and the output
is simply the output of the protocol. Unfortunately, by design, information theoretic
techniques seem to be powerless in proving lower bounds for U .

Appendix A. A simple generalization of Azuma’s inequality.
We shall need the following theorem, whose proof appears in [17]. For complete-

ness, we reproduce the part of the proof we need here:
Theorem A.1 (Azuma). Let T1, . . . , Tk be real valued random variables such that

for every i, we have E [Ti|Ti−1, . . . , Ti] ≤ 0. Set Ai = (sup(Ti)− inf(Ti)|Ti−1, . . . , T1)
2
.

6In a partial function/promise problem the protocol only needs to compute the function if the
pair of inputs comes from some subset. Our results in this paper for information measured according
to the viewpoint of the players carry over to promise problems as well.
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Then if
∑k

i=1 Ai ≤ c, for every α > 0,

Pr

[
k∑

i=1

Ti ≥ α

]
≤ exp(−2α2/c).

To prove the theorem, we need the following lemma appearing as Lemma 2.6 in
[17].

Lemma A.2. Let X be a real valued random variable with E [X ] = 0 and X ∈ [a, b]

almost surely. Then E [exp(X)] ≤ exp( (b−a)2

8 ).
Proof of Theorem A.1. First, we assume without loss of generality that E[Ti|Ti−1,

. . . , Ti] ≤ 0. We can do this by changing each random variable Ti to Ti−E[Ti|Ti−1, . . . ,
T1]. This does not change any of the conditions above, and only increases Pr[

∑
i Ti ≥

α].
By Markov’s inequality, for every positive λ we have

Pr

[
k∑

i=1

Ti ≥ α

]
= Pr

[
exp

(
λ

k∑
i=1

Ti

)
> exp(λα)

]
≤ E

[
exp

(
λ

k∑
i=1

Ti

)]
exp(−λα).

Next we show by induction on k that E[exp(λ
∑k

i=1 Ti)] ≤ sup(
∏k

i=1 E[exp(λTi)|
Ti−1, . . . , T1]). The case k = 1 is trivial. For general k we compute

E

[
exp

(
λ

k∑
i=1

Ti

)]
= E

[
exp (λT1)E

[
exp

(
λ

k∑
i=2

Ti

)
|T1

]]

≤ E [exp (λT1)] sup

(
k∏

i=2

E [exp(λTi)|Ti−1, . . . , T1]

)

(by induction)

= sup

(
E [exp (λT1)]

k∏
i=2

E [exp(λTi)|Ti−1, . . . , T1]

)

= sup

(
k∏

i=1

E [exp(λTi)|Ti−1, . . . , T1]

)
.

Thus we can bound

Pr

[
k∑

i=1

Ti ≥ α

]
≤ exp(−λα) sup

(
k∏

i=1

E [exp(λTi)|Ti−1, . . . , T1]

)

≤ exp(−λα) sup

(
k∏

i=1

exp

(
λ2Ai

8

))
(by Lemma A.2)

= exp(−λα) sup

(
exp

(∑k
i=1 λ

2Ai

8

))

= exp(−λα) exp

(
sup

(∑k
i=1 λ

2Ai

8

))

≤ exp(−λα+ λ2c/8).

D
ow

nl
oa

de
d 

12
/0

9/
15

 to
 1

8.
11

1.
81

.1
17

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1360 BOAZ BARAK, MARK BRAVERMAN, XI CHEN, AND ANUP RAO

Algorithm Rejection Sampling.
1. Sample an element z ∈R C.
2. Accept it with probability a(z), else go to the first step.

Fig. 11. Generic rejection sampling.

Setting λ = 4α/c, we get that

Pr

[
k∑

i=1

Ti ≥ α

]
≤ exp(−2α2/c).

Appendix B. Analyzing rejection sampling. In this section we give some
basic facts about rejection sampling. For a distribution C supported on some finite
set C and a function a : C → [0, 1], Figure 11 describes a generic rejection sampling
algorithm.

We prove some simple properties of this kind of sampling. Let D′ denote the
random variable of the sampled element. Let R denote the random variable that
counts the number of rounds before the algorithm accepts the sample. Then we see
that D′ is independent of R, since for any integers c, c′, D′|R = c has the same
distribution as D′|R = c′.

Proposition B.1. D′ is independent of R.
We then see that D′(w) = Pr[(R = 1) ∧ w is accepted]/Pr[R = 1] = C(w)a(w)/

Pr[R = 1]. We have shown the following claim.
Claim B.2. For some constant α, D′ = αa · C.
Now let a′ : C → [0, 1] be a function such that a′(w) ≥ a(w) for all w ∈ C, and

let D denote the random variable of the sampled element. Set b = a′ − a. Then
D = βa′ · C = βC · (a + b) for some β > 0. Thus, by Claim B.2, there exists a
distribution D′′ such that D′ is a convex combination D = β′D′′ + (1 − β′)D′. In

particular, this implies that D′(w)
D(w) ≤ 1

1−β′ . We bound β′ ≤ Pr[D′ ∈ supp(D′′)] =

Prw∈
R
D[a′(w) > a(w)]. This gives us the following two bounds.

Proposition B.3. Let D = βa′ · C be a distribution such that a′(w) ≥ a(w) for
every w. Then for every w,

D′(w)

D(w)
≤ 1

1− Prw∈
R
D[a′(w) > a(w)]

.

Proposition B.4. The expected number of rounds that the above protocol runs
for is 1/Pr[R = 1].

Proof. From the construction, we see that E [R] = Pr[R = 1] + (1 − Pr[R =
1])(1 + E [R]). Rewriting this, we get E [R] = 1/Pr[R = 1].

Appendix C. Finding the first difference in inputs.
Proof Sketch for Lemma 4.14. Without loss of generality, we assume that k = 2t

for an integer t (if not, we can always pad the input strings with 0’s until the lengths
are of this form before running the protocol). For a parameter C, we define a labeled
tree of depth C log(k/ε) = C(t + log(1/ε) as follows. The root of the tree is labeled
by the interval [1, 2t]. For i ranging from 0 to t− 1, every node at depth i labeled by
[a, b] has two children, corresponding to splitting the interval [a, b] into equal parts.
Thus the left one is labeled by the interval [a, b− 2t−i+1] and the right one is labeled
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by [a+2t−i+1, b]. Thus at depth t there are 2t nodes, each labeled by [a, a] for distinct
a’s from [2t]. Every node at depth ≥ t has exactly one child, labeled the same as the
parent.

In the protocol, the players shall try to narrow down where the first difference
in their inputs is by taking a walk on the tree. At each step, the players first check
that the interval they are on is correct, and then try to narrow down their search.
For any integer a ∈ [k], let xa denote the prefix of x of length a. To check whether
a given interval [a, b] contains the index that they seek, the players will use public
randomness to pick random functions h1 : {0, 1}a → [18] and h2 : {0, 1}b → [18] and
compare h1(xa) with h1(ya) and h2(xb) with h2(yb). The probability of getting an
incorrect answer is thus at most 1/9.

For a parameter C, the protocol works as follows:
1. the players set v to be the root of the tree;
2. the players run the tests described above to check whether the index with

the first difference lies in the interval corresponding to v and in those cor-
responding to v’s children. If the tests are consistent, and indicate that the
interval for v does not contain the index, the players set v to be the parent
of the old v (or leave it unchanged if v is the root). If the tests are consistent
and indicate that the interval of one of the children contains the index, the
players set v to be that child. If the tests are inconsistent, the players leave
v unchanged;

3. step 2 is repeated C(t+ log(1/ε)) times;
4. if the final vertex is labeled by an interval of the form [a, a], output a. Else

conclude that the input strings are equal.
To analyze the protocol, fix x and y. Note that if x = y, then the protocol never

fails. So let us assume that x �= y and assume that a is the first index at which x, y
differ. Then let w denote the vertex in the tree of largest depth that is labeled by
[a, a]. Next we direct the edges of the tree so that at every vertex, the only outgoing
edge points to the neighbor that is closer to w in terms of shortest path distance.
Then observe that at every step of our protocol, v is changed to a neighbor that is
closer to w with probability at least 2/3. Further, our protocol succeeds as long as the
number of correct steps on the tree exceeds the number of incorrect steps by t. This
happens as long as the number of correct steps is at least C/2(t+log(1/ε))+t/2. Since
the expected number of correct steps is 2C/3(t+ log(1/ε)), we get that the bad event
happens only when we deviate from the expected number by C/6(t+log(1/ε))−t/2 >
(C/6−1/2)(t+log(1/ε)). By the Chernoff bound, the probability that this happens is
at most exp(Ω((C/6− 1/2)2(t+ log(1/ε)))). Setting C to be a large enough constant
makes this error at most ε.
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