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1 Kraft’s Inequality

Recall that if C is a prefix-free code C : [n] → {0, 1}∗ with |C(1)| = l1, |C(2)| = l2, . . . , |C(n)| = ln, then∑
i 2−li ≤ 1. In the previous lecture, the proof of Kraft’s Inequality claimed that any greedy code would

do. However, consider the following example: l1 = m = l2 and l3 = 1, e.g. C(1) = 00000 and C(2) = 11111.
Then C(3) will be forced to be a prefix. The fix is to have l1 ≤ l2 ≤ · · · ≤ ln. Then if you pick C(1), . . . , C(i)

greedily, the fraction of strings of length l ≥ li that are not allowed is ≤
∑i

j=1 2−lj .

2 Basic Concepts in Information Theory

Recall our notation:

• X is a random variable with distribution PX = (P1, . . . , Pk) over a finite set Ω = {1, . . . , k}.

• The entropy of X is H(X) =
∑

x∈Ω Px log 1
Px

.

• The conditional entropy of X conditioned on another random variable Y with distribution PY is
H(X|Y ) = ExpY∼PY

[H(X|Y = y)]

We also have the following axioms about entropy:

1. H(X) ≤ log |Ω|

2. H(U) = log |Ω| where U is the uniform distribution on Ω

3. H(X|Y ) ≤ H(X)

4. H(X,Y ) = H(X) + H(Y |X), also known as the ”chain” rule

The last axiom is provable via calculations with the other three axioms while the second also follows from
the definition of entropy. The first and third remain to be proven, and will be by the end of this lecture.

2.1 Mutual Information

Intuitively, the mutual information I(X; Y) between two random variables X and Y is the amount of infor-
mation Y gives about X. Mathematically, we define this as the difference between the entropy of X and the
entropy of X conditioned on knowing Y .

I(X;Y ) , H(x)−H(X|Y )

Mutual information is symmetric, i.e. I(X;Y ) = I(Y ;X), but in practical applications we are often more
worried about one direction than the other even though mathematically they are the same. Its symmetric
can be proven by using axiom 4:

H(X) + H(Y |X) = H(X,Y ) = H(Y,X) = H(Y ) + H(X|Y )

H(X)−H(X|Y ) = H(Y )−H(Y |X)

I(X;Y ) = I(Y ;X)

Examples:

3-1



1. If X ⊥ Y, I(X;Y ) = 0 because H(X) = H(X|Y )

2. If X = Y, I(X;Y ) = H(X)

3. If X = f(Y ), I(X;Y ) = H(X) where f is a deterministic function, not necessarily invertible

4. If Y = g(X), I(X;Y ) = H(Y )

2.2 Conditional Information

Conditional information is the expectation of the mutual information between two variables X and Y con-
ditional on knowing the value of a third variable Z:

I(X;Y |Z) = ExpZ∼PZ
[I(X|Z=z;Y |Z=z)]

Mutual information has a chain rule involving conditional mutual information:

I(X1, . . . , Xn;Y ) = I(X1;Y ) + I(X2;Y |X1) + · · ·+ I(Xn;Y |X1, . . . Xn−1)

Examples:

1. Consider random variables X and Y with X ⊥ Y and both distributed uniformly over {0, 1}. Let
Z = X ⊕Y . Then I(X;Y ) = 0 but I(X;Y |Z)− 1 because we can determine X from Y and Z. In this
example, conditioning on Z increases the amount of information gained by Y .

2. Now let Z = X = Y . Then I(X;Y ) = 1 but I(X;Y |Z) because Z already reveals everything about
X; nothing is gained from Y . Thus, conditioning on Z decreases the amount of information gained by
Y .

2.3 Concavity of Entropy

Consider the tuple of random variables (X,Y ) ∼ Px,y and B ⊥ X,Y which has a distribution on (0, 1). Then
if we let Z = B ·X + (1−B) · Y , entropy H(Z) is concave if

H(Z) ≥ Pr[B = 0]H(Y ) + Pr[B = 1]H(x)

Proof: the right hand side is H(Z|B), so by axiom 3 the above inequality holds.

3 Basic Inequalities in Information Theory

3.1 Data Processing Inequality

Note: we use the following notation for Markov chains:

X → Y → Z

In the above Markov chain, X is independent of Z conditional on Y . The data processing inequality simply
tells us that the mutual information between X and Z is upper bounded by the mutual information between
X and Y :

I(X;Z) ≤ I(X;Y )

3-2



3.2 Fano’s Inequality

We again have a Markov chain:
X → Y → X̂

We could interpret the above, for example, as a true value X being transformed by noise into Y , and
then decoded into X̂. Then We have a probability of error Pe of the correctly recovering the true X:
Pe , Pr[X 6= X̂]. Fano’s inequality gives us a lower bound on Pe:

Pe ≥
H(X|Y )− 1

log |Ω|
Proof: Note that proving the above is equivalent to proving

Pe log |Ω| ≥ H(X|Y )− 1

1 + Pe log |Ω| ≥ H(X|Y )

By the data processing inequality, we know that I(X; X̂) ≤ I(X;Y ) so H(X|X̂) ≥ H(X|Y ). Then it suffices
to prove that

1 + Pe log |Ω| ≥ H(X|X̂)

Define the random variable E to be 1 if X̂ 6= X, 0 otherwise, then we will actually prove something slightly
better, namely that

H(E) + Pe log |Ω| ≥ H(X|X̂)

We start with the following:
H(E,X|X̂) = H(X|X̂) + H(E|X, X̂)

= H(X|X̂)

where the last line follows since E is known if both X and X̂ are known, so H(E|X, X̂) = 0. Also,

H(E,X|X̂) = H(E|X̂) + H(X|E, X̂)

We know by axiom 3 that H(E|X̂) ≤ H(E). For H(X|E, X̂) if E = 0, which happens with probability
1− Pe, then since we condition on X̂, we can determine X. In this case H(X|E, X̂) = 0. With probability
Pe, E = 1 so we have H(X|E, X̂), which by our axioms we know is ≤ H(X) ≤ log |Ω|. So H(X|E, X̂) is
bounded by Pe log Ω. Combining all of this, we have

H(X|X̂) = H(E|X̂) + H(X|E, X̂) ≤ H(E) + Pe log |Ω|

H(X|X̂) ≤ H(E) + Pe log |Ω|

3.3 Divergence Inequality

Given two distributions P and Q on Ω, we define the divergence D(P ||Q) of P and Q as

D(P ||Q) , ExpX∼P [− log
Q(x)

P (x)
]

Divergence lacks many useful properties. For example, divergence is not symmetric (D(P ||Q) 6= D(Q||P )
and does not respect the triangle inequality. Because of this, divergence should not be taken to mean the
”distance” between two distributions. However, divergence is useful in situations in which we have n draws
from P and Q because it scales nicely in n, i.e. D(Pn||Qn) = n ·D(P ||Q).

The divergence inequality tells us that this quantity is nonnegative, i.e.

ExpX∼P [− log
Q(x)

P (x)
] ≥ 0

Equivalently,
ExpX∼P [− logQ(x)] ≥ ExpXP

[− logP (x)]

Notice that the right hand term is the entropy of P and the left side is similar. Then we can understand the
divergence inequality as saying that the entropy of an optimal compression algorithm, i.e. that makes use
of the true underlying distribution, is better than the entropy of a suboptimal compression, i.e. based on a
different distribution.
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3.3.1 Jensen’s Inequality

In order to prove the divergence inequality, we need to make use of Jensen’s inequality, which we state here.
Consider a convex function f : R → R and a random variable X with distribution P over R such that

ExpX∼P [f(x)] and f(ExpX∼P [x]) are finite. Then Jensen’s inequality says that

Exp[f(x)] ≥ f(Exp[x])

3.3.2 Proof of Divergence Inequality

By Jensen’s inequality and the convexity of − log(x), we have that

ExpX∼P [− log
Q(x)

P (x)
] ≥ − log(ExpX∼P [

Q(x)

P (x)
)

We will manipulate the right hand side:

− log(ExpX∼P [
Q(x)

P (x)
) = − log(

∑
x

P (x)
Q(x)

P (x)

= − log(
∑
x

Q(x))

= − log(1) = 0

where the last line follows because Q(x) is a distribution.

3.3.3 Applications of the Divergence Inequality

We can use the divergence inequality to prove axioms 1 and 3.

3.3.4 Proof of First Axiom

We have a random variable X has distribution P on Ω. The entropy of X is upper-bounded:

H(X) ≤ log |Ω|

By the divergence inequality we know that

ExpX∼P [log
1

P (x)
] ≤ ExpX∼P [log

1

Q(x)
]

Letting Q(x) be the uniform distribution over Ω,

ExpX∼P [log
1

P (x)
] ≤ ExpX∼P [log Ω]

H(X) ≤ log Ω

3.3.5 Proof of Third Axiom

Recall the axiom 3:
H(X|Y ) ≤ H(X)

We know by the axiom 4 that H(X,Y ) = H(X) + H(Y |X). Then it suffices to prove

H(X|Y ) = H(X) + H(Y |X) ≤ H(X) + H(Y )

H(X|Y ) ≤ H(X) + H(Y )
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We begin by expanding the definition of entropy:

ExpX,Y∼Px,y
[log

1

Pxy(x, y)
] ≤ ExpX,Y∼Px,y

[log
1

Px(x)
] + ExpX,Y∼Px,y

[log
1

Py(y)
]

Where the right side says that for both X and Y , we draw from Px,y and only keep X or Y respectively. Our
goal is to transform the right side into the form ExpX,Y∼Px,y

[log 1
Q(x,y) ] to be able to apply the divergence

inequality. By the linearity of expectation we have

= ExpX,Y∼Px,y
[log

1

Px(x)
+ log

1

Py(y)
]

= ExpX,Y∼Px,y
[log

1

Px(x)Py(y)
]

= ExpX,Y∼Px,y
[log

1

Q(X,Y )
]

where Q(x, y) = Px(x)Py(y). By the divergence inequality we know this is true.

3-5


	Kraft's Inequality
	Basic Concepts in Information Theory
	Mutual Information
	Conditional Information
	Concavity of Entropy

	Basic Inequalities in Information Theory
	Data Processing Inequality
	Fano's Inequality
	Divergence Inequality
	Jensen's Inequality
	Proof of Divergence Inequality
	Applications of the Divergence Inequality
	Proof of First Axiom
	Proof of Third Axiom



