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1 Subadditivity of Entropy

Subadditivity of entropy is a simple but very useful result. It states that for a random vector (X1, ..., Xn),

H(X1, ..., Xn) ≤
n∑
i=1

H(Xi)

Proof: By definition,

H(X1, ..., Xn) = H(X1) +H(X2|X1) +H(X3|X1, X2) + ...+H(Xn|X1, ..., Xn−1)

Term-wise, H(Xi|Xi−1, ..., X1) ≤ H(Xi), so

H(X1) +H(X2|X1) +H(X3|X1, X2) + ...+H(Xn|X1, ..., Xn−1) ≤
n∑
i=1

H(Xi)

giving the desired result. �

1.1 Review of Shearer’s Lemma

Shearer’s Lemma may be stated as follows: Let F be a family of subsets of [n], such that each i ∈ [n] is
included in at least t members of F . Then for random variables X1, ..., Xn,

H(X1, ..., Xn) ≤ 1

t

∑
F∈F

H(XF )

where XF = (Xi1 , ..., Xi|F |) where F = (i1, ..., i|F |), such that i1 < i2 < ... < i|F |.
Proof of Shearer’s lemma: By definition, H(XF ) = H(Xi1 , ..., Xi|F |) = H(Xi1) + H(Xi2 |Xi1) + ... +

X(Xi|F | |Xi1 , ..., Xi|F |−1
)

Considering this expression term-by-term, we get the inequalities:

H(Xij |Xij−1
, ..., Xi1) ≥ H(Xij |Xij−1, ..., X1)

since the right hand side simply conditions on more information.
Then by summing, we get that∑

F∈F
H(XF ) ≥

n∑
i=1

tH(Xi|Xi−1, ..., X1) ≥ tH(X)

since each term H(Xi|Xi−1, ..., X1) appears at least t times over F ∈ F . �

2 Sums of binomial coefficients

Subadditivity of entropy can be applied to prove inequalities in combinatorial contexts.
Recall Stirling’s approximation: n! ≈

(
n
e

)n√
2πn.

Applying this to a binomial coefficient of the form
(
n
αn

)
with α ∈ [0, 1] gives(

n

αn

)
=

n!

(αn)!(n− αn)!
≈ 2H(α)n√

2πnα(1− α)

where H(α) represents the entropy of a bernoulli random variable with probability of success α, satisfying
H(α) = −α logα− (1−α) log(1−α). This suggests a connection between entropy and binomial coefficients.
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Theorem 1: When α ≤ 1
2 ,
∑
i≤αn

(
n
i

)
≤ 2H(α)n

This can be proved using the subadditivity of entropy:
Consider a collection of sets C = {C : C ⊂ [n], |C| ≤ αn}.
LetX be a random variable, chosen uniformly at random from C. ThenH(X) = log |C| = log

(∑
i≤αn

(
n
i

))
,

so it is sufficient to show that H(X) ≤ H(α)n.
Now suppose X = {X1, ..., Xn} with Xi = 1 if i ∈ X and 0 otherwise. Then H(X) = H(X1, ..., Xn) ≤∑n
i=1H(Xi) by subadditivity of entropy. Then it is sufficient to show that H(Xi) ≤ H(α), since all of the

Xi are symmetric.

P (i ∈ X) =

αn∑
l=0

P (i ∈ X||X| = l)P (|X| = l) ≤ α
αn∑
l=0

P (|X| = l) = α

since for all l, P (i ∈ X||X| = l) = l
n ≤

αn
n = α.

In the case that |X| = αn, P (i ∈ X) = α, and otherwise P (i ∈ X) < α, so in general P (i ∈ X) ≤ α.
Since α ≤ 1

2 , this gives us that H(Xi) ≤ H(α), as desired. �
An example application of this result:

Theorem 2: For X ∼ Binom
(
n, 12

)
, σ =

√
n
2

P
(
|X − n

2
| ≥ cσ

)
≤ 21−

c2

2

∀c ≥ 0.
Proof: By symmetry, P

(
|X − n

2 | ≥ cσ
)

= 2P
(
X ≤ n

2 − cσ
)
. Clearly, P (X = i) =

(
n
i

)
2−n, so we have

that 1
2P (|X − n

2 | ≥ cσ) =
∑n

2−cσ
i=0

(
n
i

)
2−n. Applying theorem 1 gives that

∑n
2−cσ
i=0

(
n
i

)
2−n ≤ 2H( 1

2−
cσ
n ). Then

we get the theorem by noting that H( 1
2 − ε) ≤ 1− 1

2 log(1− ε2) to get that 2H( 1
2−

cσ
n ) ≤ 2

−c2
2 .

3 The coin-weighing problem

Suppose there are n coins, indexing by C = [n]. There is a subset B ⊆ C of “fake” coins with known
different weights (all of the fake coins have the same weight, and all of the real coins have the same weight).
We proceed by selecting subsets Di ⊆ C and weighing them, which tells us the number of fake coins in Di,
|Di ∩ B|. We wish to determine the identity of the fake coins, with the subsets Di all selected in advance,
before any weighings have been done. Clearly we can choose the n singleton sets Di = {i}, and this would
be enough to determine B, but we can make tighter upper and lower bounds.

Note that determining B is equivalent to selecting enough subsets Di such that for any subsets B,B′ ⊆
C, there exists an i such that |Di ∩ B| 6= |Di ∩ B′|. Then we can represent the information in B by
(|D1 ∩B|, |D2 ∩B|, ..., |Dl ∩B|) since these values uniquely determine B.

Denote the minimal size of l by f(n). It can be shown by a combinatorial argument that

f(n) ≤ 2n

log n

(
1 +O

(
log log n

log n

))
See [2] for a proof of this upper bound.
We will use an information theoretic argument to show that

f(n) ≥ 2n

log n

(
1 + Ω

(
1

log n

))
Suppose that B is picked uniformly at random from C (each element has a 1

2 chance of inclusion). By
the subadditivity of entropy, we have that
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n = H(B) = H (|D1 ∩B|, |D2 ∩B|, ..., |Dl ∩B|) ≤
l∑
i=1

H (|Di ∩B|) ≤
l∑
i=1

log(n+ 1) ≤ l log(n+ 1) (1)

giving us a weak bound, f(n) ≥ n
log(n+1) .

However, we can do better. Since the elements of B are picked at random and don’t depend on the Di,
we have that |Di ∩B| ∼ Yi, where Yi ∼ B(di,

1
2 ) is a binomial random variable, with di = |Di|. Then

H (|Di ∩B|) = H(Yi) =

di∑
j=0

(
di
j

)
2−j log

(
2di(
di
j

))

Using Theorem 2 here then gives us that

H(Yi) ≤
1

2
log di + ε(c) log di

where ε(c) denotes a factor that can be made arbitrarily small by choosing c appropriately. Substituting
this back into (1) gives us the missing factor of 2 in our weaker bound provided above. �

4 Bregman’s Theorem

Bregman’s Theorem states that for a bipartite graph G on color classes E = {v1, ..., vn} and O = {w1, ..., wn}
with each vi ∈ having degree di, then

|Mperf (G)| ≤
n∏
i=1

(di!)
1
di

where Mperf (G) refers to the number of perfect matchings.
A proof of Bregman’s Theorem will be presented in the following class. See [3, 1] for more on these topics.
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