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1 Subadditivity of Entropy

Subadditivity of entropy is a simple but very useful result. It states that for a random vector (X7,

n
H(X1,... Xp) <Y H(X))
=1
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Proof: By definition,
H(Xy,...,X,) = H(
Term—wise, H(XZ|X7_1, ...,Xl) S H(XJ, SO
H(X1) + H(X2|X1) + H(X3| X1, X2) + oo+ H(Xp | X1, .0, X 1) < > H(X;)
=1

X1) + H(X2|X1) + H( X5 X1, Xo) + ... + HX| X1, oo, Xno1)

giving the desired result. W

1.1 Review of Shearer’s Lemma
Shearer’s Lemma may be stated as follows: Let F be a family of subsets of [n], such that each i € [n] is
included in at least ¢ members of F. Then for random variables X1, ..., X,,
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where Xp = (Xil,...,Xl-‘F‘) where I = (i1, ...,4|p|), such that i; <iy < ... <ip.
Proof of Shearer’s lemma: By definition, H(Xr) = H(X;,, ..., Xi ) = H(X;,) + H(X,| X)) + . +

X (X o [ Xy s woes X )
Considering this expression term-by-term, we get the inequalities:

H(X,| X0, 4y Xiy) > H(X3) | X, -1, 000, X1)

since the right hand side simply conditions on more information.
Then by summing, we get that
n
ST H(Xp) > tH(Xi| X1, ... X1) > tH(X)
FcF i=1
since each term H(X;|X;_1,...,X1) appears at least ¢ times over F' € 7. B

2 Sums of binomial coefficients

Subadditivity of entropy can be applied to prove inequalities in combinatorial contexts.
Recall Stirling’s approximation: n! ~ (%)n 2mn.
Applying this to a binomial coefficient of the form () with a € [0,1] gives

2H(a)n

<;n) = i - an)! ~ Jorna(l - a)

where H(«) represents the entropy of a bernoulli random variable with probability of success «, satisfying
H(a) = —aloga— (1 —a)log(l — «). This suggests a connection between entropy and binomial coefficients.
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Theorem 1: When o < 1, D ican (") < 2H(@)n

This can be proved using the subadditivity of entropy:
Consider a collection of sets C = {C': C C [n],|C| < an}.
Let X be a random variable, chosen uniformly at random from C. Then H(X) = log |C| = log (Eigan (")) ,

so it is sufficient to show that H(X) < H(a)n.

Now suppose X = {X1,..., X} with X; = 1if i € X and 0 otherwise. Then H(X) = H(X1,...,X,) <
Sor H(X;) by subadditivity of entropy. Then it is sufficient to show that H(X;) < H(a), since all of the
X, are symmetric.

Plie X)=>Y P(ieX|[|X|=)P(X|=10)<a) P(X|=1)=
=0 =0

since for all [, P(i € X[|X|=1) =L .
In the case that |X| = an, P(i € X) = «, and otherwise P(i € X) < «, so in general P(i € X) < «
Since a < 1, this gives us that H(X;) < H(a), as desired. B
An example application of this result:
\/ﬁ

Theorem 2: For X ~ Binom (n, %), o=

C2
P (|X - g| > ca) <ol-%

Ve > 0.

Proof: By symmetry, P (|X 2] >co) =2P (X <% —co). Clearly, ( = i) = (7)27", so we have
that $P(|X — 2| > co) = f:)m (27", Applying theorem 1 gives that Z (?)2 "< 2H( ). Then
we get the theorem by noting that H(§ —e)<1—3 1log(1 — €?) to get that 2H(%’CTO)

3 The coin-weighing problem

Suppose there are n coins, indexing by C' = [n]. There is a subset B C C of “fake” coins with known
different weights (all of the fake coins have the same weight, and all of the real coins have the same weight).
We proceed by selecting subsets D; C C' and weighing them, which tells us the number of fake coins in D,
|D; N B|. We wish to determine the identity of the fake coins, with the subsets D; all selected in advance,
before any weighings have been done. Clearly we can choose the n singleton sets D; = {i}, and this would
be enough to determine B, but we can make tighter upper and lower bounds.

Note that determining B is equivalent to selecting enough subsets D; such that for any subsets B, B’ C
C, there exists an i such that |D; N B| # |D; N B’|. Then we can represent the information in B by
(|D1 N B|,|D2N B, ..., |D; N B|) since these values uniquely determine B.

Denote the minimal size of | by f(n). It can be shown by a combinatorial argument that

2 log 1
fn) < 20 (1+o (Ogogn>>
logn logn
See [2] for a proof of this upper bound.
We will use an information theoretic argument to show that
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Suppose that B is picked uniformly at random from C' (each element has a % chance of inclusion). By
the subadditivity of entropy, we have that




l l
n=H(B)=H(D\nB|,|D:NBl|,..|D;NB|)<> H(D;N B Z 1) <llog(n+1) (1)

i=1 i=1

giving us a weak bound, f(n) > m.
However, we can do better Since the elements of B are picked at random and don’t depend on the D;,
we have that |D; N B| ~ Y;, where Y; ~ B(d;, 4) is a binomial random variable, with d; = |D;|. Then

AN 2di
H(|D;nB|)=H(Y;) = Z ( .1)2_j log <d.>
j=o \J (J>
Using Theorem 2 here then gives us that

1
HY;) < ilogd + ¢(c) logd;

where €(c) denotes a factor that can be made arbitrarily small by choosing ¢ appropriately. Substituting
this back into (1) gives us the missing factor of 2 in our weaker bound provided above. B

4 Bregman’s Theorem

Bregman’s Theorem states that for a bipartite graph G on color classes £ = {vy, ...,v,} and O = {wy, ..
with each v; € having degree d;, then

Wy}

-

n
M peTf H )%

where M, ¢(G) refers to the number of perfect matchings.
A proof of Bregman’s Theorem will be presented in the following class. See [3, 1] for more on these topics.
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