1 Subadditivity of Entropy

Subadditivity of entropy is a simple but very useful result. It states that for a random vector $\left(X_{1}, \ldots, X_{n}\right)$,

$$
H\left(X_{1}, \ldots, X_{n}\right) \leq \sum_{i=1}^{n} H\left(X_{i}\right)
$$

Proof: By definition,

$$
H\left(X_{1}, \ldots, X_{n}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{1}, X_{2}\right)+\ldots+H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

Term-wise, $H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right) \leq H\left(X_{i}\right)$, so

$$
H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{1}, X_{2}\right)+\ldots+H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \leq \sum_{i=1}^{n} H\left(X_{i}\right)
$$

giving the desired result.

1.1 Review of Shearer's Lemma

Shearer's Lemma may be stated as follows: Let \mathcal{F} be a family of subsets of $[n]$, such that each $i \in[n]$ is included in at least t members of \mathcal{F}. Then for random variables X_{1}, \ldots, X_{n},

$$
H\left(X_{1}, \ldots, X_{n}\right) \leq \frac{1}{t} \sum_{F \in \mathcal{F}} H\left(X_{F}\right)
$$

where $X_{F}=\left(X_{i_{1}}, \ldots, X_{i_{|F|}}\right)$ where $F=\left(i_{1}, \ldots, i_{|F|}\right)$, such that $i_{1}<i_{2}<\ldots<i_{|F|}$.
Proof of Shearer's lemma: By definition, $H\left(X_{F}\right)=H\left(X_{i_{1}}, \ldots, X_{i_{|F|} \mid}\right)=H\left(X_{i_{1}}\right)+H\left(X_{i_{2}} \mid X_{i_{1}}\right)+\ldots+$ $X\left(X_{i_{|F|} \mid} \mid X_{i_{1}}, \ldots, X_{i_{|F|-1}}\right)$

Considering this expression term-by-term, we get the inequalities:

$$
H\left(X_{i_{j}} \mid X_{i_{j-1}}, \ldots, X_{i_{1}}\right) \geq H\left(X_{i_{j}} \mid X_{i_{j}-1}, \ldots, X_{1}\right)
$$

since the right hand side simply conditions on more information.
Then by summing, we get that

$$
\sum_{F \in \mathcal{F}} H\left(X_{F}\right) \geq \sum_{i=1}^{n} t H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right) \geq t H(X)
$$

since each term $H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)$ appears at least t times over $F \in \mathcal{F}$.

2 Sums of binomial coefficients

Subadditivity of entropy can be applied to prove inequalities in combinatorial contexts.
Recall Stirling's approximation: $n!\approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}$.
Applying this to a binomial coefficient of the form $\binom{n}{\alpha n}$ with $\alpha \in[0,1]$ gives

$$
\binom{n}{\alpha n}=\frac{n!}{(\alpha n)!(n-\alpha n)!} \approx \frac{2^{H(\alpha) n}}{\sqrt{2 \pi n \alpha(1-\alpha)}}
$$

where $H(\alpha)$ represents the entropy of a bernoulli random variable with probability of success α, satisfying $H(\alpha)=-\alpha \log \alpha-(1-\alpha) \log (1-\alpha)$. This suggests a connection between entropy and binomial coefficients.

Theorem 1: When $\alpha \leq \frac{1}{2}, \sum_{i \leq \alpha n}\binom{n}{i} \leq 2^{H(\alpha) n}$
This can be proved using the subadditivity of entropy:
Consider a collection of sets $\mathcal{C}=\{C: C \subset[n],|C| \leq \alpha n\}$.
Let X be a random variable, chosen uniformly at random from \mathcal{C}. Then $H(X)=\log |\mathcal{C}|=\log \left(\sum_{i \leq \alpha n}\binom{n}{i}\right)$, so it is sufficient to show that $H(X) \leq H(\alpha) n$.

Now suppose $X=\left\{X_{1}, \ldots, X_{n}\right\}$ with $X_{i}=1$ if $i \in X$ and 0 otherwise. Then $H(X)=H\left(X_{1}, \ldots, X_{n}\right) \leq$ $\sum_{i=1}^{n} H\left(X_{i}\right)$ by subadditivity of entropy. Then it is sufficient to show that $H\left(X_{i}\right) \leq H(\alpha)$, since all of the X_{i} are symmetric.

$$
P(i \in X)=\sum_{l=0}^{\alpha n} P(i \in X| | X \mid=l) P(|X|=l) \leq \alpha \sum_{l=0}^{\alpha n} P(|X|=l)=\alpha
$$

since for all $l, P(i \in X| | X \mid=l)=\frac{l}{n} \leq \frac{\alpha n}{n}=\alpha$.
In the case that $|X|=\alpha n, P(i \in X)=\alpha$, and otherwise $P(i \in X)<\alpha$, so in general $P(i \in X) \leq \alpha$. Since $\alpha \leq \frac{1}{2}$, this gives us that $H\left(X_{i}\right) \leq H(\alpha)$, as desired.

An example application of this result:
Theorem 2: For $X \sim \operatorname{Binom}\left(n, \frac{1}{2}\right), \sigma=\frac{\sqrt{n}}{2}$

$$
P\left(\left|X-\frac{n}{2}\right| \geq c \sigma\right) \leq 2^{1-\frac{c^{2}}{2}}
$$

$\forall c \geq 0$.
Proof: By symmetry, $P\left(\left|X-\frac{n}{2}\right| \geq c \sigma\right)=2 P\left(X \leq \frac{n}{2}-c \sigma\right)$. Clearly, $P(X=i)=\binom{n}{i} 2^{-n}$, so we have that $\frac{1}{2} P\left(\left|X-\frac{n}{2}\right| \geq c \sigma\right)=\sum_{i=0}^{\frac{n}{2}-c \sigma}\binom{n}{i} 2^{-n}$. Applying theorem 1 gives that $\sum_{i=0}^{\frac{n}{2}-c \sigma}\binom{n}{i} 2^{-n} \leq 2^{H\left(\frac{1}{2}-\frac{c \sigma}{n}\right)}$. Then we get the theorem by noting that $H\left(\frac{1}{2}-\epsilon\right) \leq 1-\frac{1}{2} \log \left(1-\epsilon^{2}\right)$ to get that $2^{H\left(\frac{1}{2}-\frac{c \sigma}{n}\right)} \leq 2^{\frac{-c^{2}}{2}}$.

3 The coin-weighing problem

Suppose there are n coins, indexing by $C=[n]$. There is a subset $B \subseteq C$ of "fake" coins with known different weights (all of the fake coins have the same weight, and all of the real coins have the same weight). We proceed by selecting subsets $D_{i} \subseteq C$ and weighing them, which tells us the number of fake coins in D_{i}, $\left|D_{i} \cap B\right|$. We wish to determine the identity of the fake coins, with the subsets D_{i} all selected in advance, before any weighings have been done. Clearly we can choose the n singleton sets $D_{i}=\{i\}$, and this would be enough to determine B, but we can make tighter upper and lower bounds.

Note that determining B is equivalent to selecting enough subsets D_{i} such that for any subsets $B, B^{\prime} \subseteq$ C, there exists an i such that $\left|D_{i} \cap B\right| \neq\left|D_{i} \cap B^{\prime}\right|$. Then we can represent the information in B by $\left(\left|D_{1} \cap B\right|,\left|D_{2} \cap B\right|, \ldots,\left|D_{l} \cap B\right|\right)$ since these values uniquely determine B.

Denote the minimal size of l by $f(n)$. It can be shown by a combinatorial argument that

$$
f(n) \leq \frac{2 n}{\log n}\left(1+O\left(\frac{\log \log n}{\log n}\right)\right)
$$

See [2] for a proof of this upper bound.
We will use an information theoretic argument to show that

$$
f(n) \geq \frac{2 n}{\log n}\left(1+\Omega\left(\frac{1}{\log n}\right)\right)
$$

Suppose that B is picked uniformly at random from C (each element has a $\frac{1}{2}$ chance of inclusion). By the subadditivity of entropy, we have that

$$
\begin{equation*}
n=H(B)=H\left(\left|D_{1} \cap B\right|,\left|D_{2} \cap B\right|, \ldots,\left|D_{l} \cap B\right|\right) \leq \sum_{i=1}^{l} H\left(\left|D_{i} \cap B\right|\right) \leq \sum_{i=1}^{l} \log (n+1) \leq l \log (n+1) \tag{1}
\end{equation*}
$$

giving us a weak bound, $f(n) \geq \frac{n}{\log (n+1)}$.
However, we can do better. Since the elements of B are picked at random and don't depend on the D_{i}, we have that $\left|D_{i} \cap B\right| \sim Y_{i}$, where $Y_{i} \sim B\left(d_{i}, \frac{1}{2}\right)$ is a binomial random variable, with $d_{i}=\left|D_{i}\right|$. Then

$$
H\left(\left|D_{i} \cap B\right|\right)=H\left(Y_{i}\right)=\sum_{j=0}^{d_{i}}\binom{d_{i}}{j} 2^{-j} \log \left(\frac{2^{d_{i}}}{\binom{d_{i}}{j}}\right)
$$

Using Theorem 2 here then gives us that

$$
H\left(Y_{i}\right) \leq \frac{1}{2} \log d_{i}+\epsilon(c) \log d_{i}
$$

where $\epsilon(c)$ denotes a factor that can be made arbitrarily small by choosing c appropriately. Substituting this back into (1) gives us the missing factor of 2 in our weaker bound provided above.

4 Bregman's Theorem

Bregman's Theorem states that for a bipartite graph G on color classes $\mathcal{E}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\mathcal{O}=\left\{w_{1}, \ldots, w_{n}\right\}$ with each $v_{i} \in$ having degree d_{i}, then

$$
\left|\mathcal{M}_{p e r f}(G)\right| \leq \prod_{i=1}^{n}\left(d_{i}!\right)^{\frac{1}{d_{i}}}
$$

where $\mathcal{M}_{\text {perf }}(G)$ refers to the number of perfect matchings.
A proof of Bregman's Theorem will be presented in the following class. See [3, 1] for more on these topics.

References

[1] S. Ajesh Babu and Jaikumar Radhakrishnan, An entropy based proof of the Moore bound for irregular graphs, 2010.
[2] D. Cantor and W. Mills, Determination of a subset from certain combinatorial properties, Can. J. Math, 1966.
[3] David Galvin, Three tutorial lectures on entropy and counting, 2014.

