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1 Lecture Outline

• Bregman’s Theorem

• Moore Bound for Irregular Graphs

• Alon-Hoory-Linial Lemma (main information theoretic lemma)

2 Bregman’s Theorem

2.1 Statement

Theorem 1 (Bregman’s Theorem) Let G = (A,B,E) be a bipartite graph with |A| = |B| =
n. Suppose Mperf (G) is the set of perfect matchings in G and di denote the degree of the vertex
vi ∈ A. Then, the number of perfect matchings in G is at most:

|Mperf (G)| ≤
n∏
i=1

(di!)
1
di

Note that the bound is tight: for each fixed d and n where d divides n, the tight bound is
acheived by the complete bipartite graph with d vertices in each subsets, A and B.
Also, note that if we take the log of both sides, we get:

log |Mperf (G)| ≤
n∑
i=1

log di!

di

which we’ll prove below.

2.2 Wrong Approach

We can view the perfect matchings as being drawn at random from a set of perfect matchings,
and denote the random variables {x1, . . . , xn} by fixing an ordering of the vertices of A. Then
we have:

log |Mperf (G)| = H(x1, . . . , xn)

≤
n∑
i=1

H(xi)

≤
n∑
i=1

log di

However, this just gives us that the number of perfect matching is at most
∏n
i=1 di, which is not

interesting and does not prove Bregman’s inequality above.
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2.3 Proof

We can use the chain rule of entropy to reexpress the above entropy, H(x1, . . . , xn) as follows:

H(x1, . . . , xn) = H(x1) +

n∑
i=2

H(xi | x1, . . . , xi−1)

In the approach taken above, for each of the H(xi | x1, . . . , xi−1) term, we essentially ignored
any consequence of the fact that x1, . . . , xi−1 are already known, and thus our inequality was too
loose.
To exploit this, pick a random permutation τ ∈ Sn and substitute:

H(xτ−1(1), . . . , xτ−1(n)) = H(xτ−1(1)) +

n∑
i=2

H(xτ−1(i)|xτ−1(1), . . . , xτ−1(i−1))

This becomes:

H(X) =

n∑
i=1

H(xi | xτl : l < τ−1(i))

We average this over all τ ∈ Sn and switch the order of summation, and we get:

H(X) =
1

n!

n∑
i=1

∑
τ∈Sn

H(xi | xτl : l < τ−1(i))

from now on, we fix i and consider only the inner summand of the above equation.
We introduce a notation:

• Nk(τ,M) is the number of possibilities that remain for τ−1(k)th node when τ−1(1), . . . , τ−1(k−
1) have been revealed so far.

Note that this value ranges from 1 to dk.
Going back to the above equation, we note that for each fixed τ ∈ Sn,

H(xi | xτl : l < τ−1(i)) ≤
dk∑
i=1

Pr[Nk(τ,M) = i] · log i

=

dk∑
i=1

log i

n!|Mperf (G)|
∑

f∈Mperf (G)

|f ∈Mperf (G) : Nk(τ, f) = i|
|Mperf (G)|

Therefore, now for the distribution of τ ∈ Sn, the above summand is just the sum of this over
Sn varying τ :∑
τ∈Sn

H(xi | xτl : l < τ−1(i)) ≤
∑
τ∈Sn

dk∑
i=1

log i

n!|Mperf (G)|
∑

f∈Mperf (G)

|f ∈Mperf (G) : Nk(τ, f) = i|
|Mperf (G)|

=

dk∑
i=1

log i

|Mperf (G)|
∑

f∈Mperf (G)

∑
τ∈Sn

|{f ∈Mperf (G) : Nk(τ, f) = i}|
n!

=

dk∑
i=1

log i

|Mperf (G)|
∑

f∈Mperf (G)

1

dk

=
1

dk
log(dk!)
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and therefore, plugging the sum over k back in:

H(X) ≤
n∑
k=1

log(dk!)

dk

Since the τ are chosen at random from a uniform distribution, we have H(X) = log |Mperf (G)|,
and therefore,

log |Mperf (G)| ≤
n∑
k=1

log(dk!)

dk

as required from the statement above, and the proof is complete.

3 Moore Bound for Irregular Graphs

3.1 Notations

First, we define some notations for convenience:

• G is an undirected graph.

• n is the number of vertices of G.

• g is the girth of G (the length of the shortest cycle).

• δ = minu∈vdu ≥ 2 (minimum degree of a vertex is at least 2).

• d = 1
n

∑
u∈v du.

Using these, we can state the Moore bound:

3.2 Statement

Theorem 2 (Moore Bound) For graph G with the above properties, the following inequalities
holds:

• (odd girth) If g = 2r + 1 for some r ∈ N, then

n ≥ 1 + d

r−1∑
i=0

(d− 1)i

• (even girth) If g = 2r for some r ∈ N, then

n ≥ 2

r−1∑
i=0

(d− 1)i

Alon, Hoory, and Linial proved that even when substituting the average value d with the minimum
degree, δ, the above inequality holds.
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3.3 Proof

We will only prove the odd girth case, as the even case can be proved rather easily if one can
prove the odd case.
First, we define the following notation:

• ni(v) is the number of non-returning walks (= paths) in G of length i, when starting from
vertex v.

The proof will follow from the following lemma by Alon, Hoory, and Linial:

Lemma 3 (Alon-Hoory-Linial) Let π be a distribution over the vertices such that

PrV∼π[V = v] =
dv

nd

=
dv

2|E(G)|
Then, the following inequality holds for i ≥ 1:

EV∼πni(v) ≥ d(d− 1)i−1

Suppose that the above lemma holds. Then for the odd girth case, by linearity of expectations,

n ≥ E[n0(v) + n1(v) + · · ·+ nr(v)]

≥ 1 + d

r−1∑
i=0

(d− 1)i

and the case of even girth can be proved analogously. Therefore, the proof of Alon-Hoory-Linial
lemma is crucial to proving the Moore Bound for irregular graphs. So we prove the lemma.
For each vertex, we are picking a neighbor at random while avoiding itself. Let Vk be the random
variable of the choice of neighbor of the kth vertex. Since the logarithmic function is a concave
function, by Jensen’s inequality, we have:

logEv∼π[ni(v)] ≥ Ev∼π[log(ni(v))]

=
∑

PrV∼π(V = v) log(ni(v))

≥ H(V1, . . . , Vi | V )

= H(V1 | V ) +

i−1∑
j=1

H(Vj+1 | V1, . . . , Vj , V )

= Ev∼π[log(dv)] +

i−1∑
j=1

Evj∼πj
[log(dvj − 1)]

= Ev∼π[log(dv(dv − 1)i)]

where the last equality is left for the readers to check in the paper, but is crucial to proving the
lemma, as if the equality is true, then the lemma immediately follows:

logEv∼π[ni(v)] ≥ Ev∼π[log(dv(dv − 1)i)]

=
∑
v∈V

dv

nd
log(dv(dv − 1)i)

So, all that is left is to check that the equality holds, which is the same as proving the following
lemma:
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Lemma 4 π = πj for all j

We can possibly use some symmetry argument to prove this lemma, but we will use induction to
prove this.
If we denote the set of neighboring vertices of a vertex vi by Γ(vi), then we see that:

Pr[vj is chosen as the jth step] =
∑

w∈Γ(vj)

Pr[w is chosen as the (j − 1)th step] · Pr[w chooses vj ]

=
∑

w∈Γ(vj)

dw
2|E|

· 1

dw

=
dvj
2|E|

whereas the following equality also holds:

Pr[v is chosen as the jth step] =
∑

w∈Γ(v)

Pr[w is chosen in (j − 1)th steps in G/v] · Pr[w chooses v] · Pr[v0 6= v]

=
∑

w∈Γ(v)

dw − 1

2|E| − dv
· 1

dw − 1
·
(

1− dv
2|E|

)
=

∑
w∈Γ(v)

1

2|E|

=
dv

2|E|

and therefore, the proof is complete via induction.
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