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Overview

Overview of today’s lecture:

• Hypothesis Testing

• Total Variation Distance

• Pinsker’s Inequality

• Application of Pinsker’s Inequality to Coin Tossing

Hypothesis Testing

Hypothesis Testing broadly fits into the framework of inference, where we have a hypothesis
that we set as a null hypothesis and an alternative hypothesis. For example, for coin tosses,
our null hypothesis may be that we have a fair coin which is Ber(0.5) and our alternative
may be that we have a biased coin which is Ber(p) for some p 6= 0.5. Given samples from an
unknown distribution, we would like to figure out which of our hypothesis is correct.

Moreover, there are two types of error:

• Type 1: False positive error. This refers to the rejection of a true null hypothesis.

• Type 2: False negative error. This refers to the failure to reject a false null hypothesis.

We want to find the true error, or the sum of the two errors.

Total Variational Distance

We frequently want to find the distance between two distributions. There are many ways to
do this, and one of them is called total variational distance, or TVD. This is defined on
two distributions A, B as:

TVD(A,B) = sup
S⊂Ω
|A(S)−B(S)|



where A(S) is the probability that A assigns to subset S, and B(S) is the same. Intuitively,
this refers to the largest difference in probability that distributions A and B will assign to
the same event. We can rewrite as

sup
S∈Ω

{∑
x∈S

A(x)−
∑
x∈S

B(x)

}

Suppose we define Smax = {x|A(x) ≥ B(x)} Then, assuming finite distributions, it is clear
that TVD can also be defined as∑

x∈Smax

A(x)−B(x) = −
∑

x 6∈Smax

A(x)−B(x)

where the equality holds because
∑

xA(x) =
∑

xB(x) = 1. Given the equality of the two
above, we can take the average and it will also be equal, so we have:

TVD(A,B) =
∑

x∈Smax

A(x)−B(x) = −
∑

x 6∈Smax

A(x)−B(x)

=
1

2

∑
x∈Smax

|A(x)−B(x)|+
∑

x 6∈Smax

|A(x)−B(x)|

=
1

2

∑
x

|A(x)−B(x)|

where the signs and the placement of the absolute values follows from the definitions of Smax.
Note, however, that this is precisely the 1-norm, so we have:

TVD(A,B) =
1

2
||A−B||1

Now, it’s important to ask a basic question: why would we use this? There are some pros
and some cons.

1. Pro: Symmetric. Unlike KL-divergence, we know that TVD(A,B) = TVD(B,A).

2. Con: TV D(A2, B2) can be equal to TV D(A,B), where the former is defined as the
distribution on two samples from each distribution. Example: A = Ber(p) and B =
Ber(p) – TV D(A,B) = TV D(A2, B2). This is bad because we would like to believe
that two samples will give us more information about the true nature of the underlying
distribution, but it does not always. 1

1This should not be interpreted to mean that for any A,B, this is true. It isn’t. This is simply a statement
that such distributions A,B exist.
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3. Pro: 1−TV D(A,B) is equal to the sum of the false positive error and the false negative
error.

4. Pro: limn→∞ TV D(An, Bn) = 1. This is counterintuitive, given 2), but tells us that
we will get (exponentially) more information about the true distributions with more
sampling, even if having 2 samples vs 1 sample does not tell us anything new.

We will prove 4. from the list above. The folloiwing claim reflects the fact that total variation
distance goes to 1 exponentially quickly.

Claim. Suppose we have X, Y such that TVD(X, Y ) = δ. We want to prove that for all
k ∈ N:

1− 2e−kδ
2/2 ≤ TVD(Xk, Y k)

Proof. By the definition of TVD , there exists a subset S such that given samples x ∼ X, y ∼
Y , we have: P (x ∈ S)−P (y ∈ S) = δ. We also define P (y ∈ S) = p ⇐⇒ P (x ∈ S) = p+δ.

Given k samples of X, we know that the probability of any sample being in S is p+ δ. Thus,
in expectation, (p+ δ)k of the samples will be in S. Similarly, given k samples of Y , pk will
be in S in expectation.

Now, we can apply the Chernoff bound to see that:

P (at least

(
p+

δ

2

)
k components of Y are in S) < e

−kδ2
2

P (at most

(
p+

δ

2

)
k components of X are in S) < e

−kδ2
2

Let S ′ be the set of k-tuples that contain more than
(
p+ δ

2

)
k components of S. Then, we

can bound:

TVD(Xk, Y k) ≥ P (Xk ∈ S ′)− P (Y k ∈ S ′) > (1− e
−kδ2

2 )− e
−kδ2

2 = 1− 2e
−kδ2

2

which gives us the desired result.

Pinsker’s Inequality

Pinsker’s Inequality states that:

D(P ||Q) ≥ 1

2 ln 2
||P −Q||21
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where D(P ||Q) is the KL Divergence of P and Q, defined as:

D(P ||Q) =
∑
x

p(x) log

(
p(x)

q(x)

)
We can rewrite Pinsker’s Inequality:

D(P ||Q) ≥ 1

2 ln 2
||P −Q||21 ⇐⇒ TVD(P,Q) ≤ 1

2

√
2 ln(2) ·D(P ||Q)

Proof: We’re going to start with the case where P and Q are Bernoulli. This can then be
used to prove any other case. Define P and Q as:

P =

{
1 w.p. p

0 w.p. 1− p
Q =

{
1 w.p. q

0 w.p. 1− q

We assume without loss of generality that p ≥ q. We can write out the KL-divergence and
TVD explicitly:

D(p||q) = p log
p

q
+ (1− p) log

(
1− p
1− q

)
TVD(p, q) = ||(p, 1− p)− (q, 1− q)||1 = 2(p− q)

We can define

f(p, q) = p log
p

q
+ (1− p) log

(
1− p
1− q

)
− (2(p− q))2

2 ln 2

We can take the derivative of this function:

δf(p, q)

δq
= −p− q

ln 2

(
1

q(1− q)
− 4

)
Note that p − q is always positive and ln 2 is positive. Moreover, q · (1 − q) ≤ 1

4
for all q.

Thus, the term inside the parentheses is positive, and the negative in front of the expression
makes the derivative ≤ 0, and equal to 0 when p = q. From this, we can conclude that for
p > q, the function must be positive, as it is zero at p = q and decreasing. Thus:

f(p, q) = p log
p

q
+ (1− p) log

(
1− p
1− q

)
− 1

2 ln 2
(2(p− q))2 ≥ 0

⇐⇒ p log
p

q
+ (1− p) log

(
1− p
1− q

)
≥ 1

2 ln(2)
(2(p− q))2

⇐⇒ D(P ||Q) =
1

2 ln(2)
||P −Q||21

as desired. Moreover, we can prove the non-binary case via a reduction to the binary case.
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Applications of Pinsker’s Inequality to Coin Tossing

Note that D(Pm||Qm) = mD(P ||Q). We can prove this using the chain rule of KL Diver-
gence:

D(P (X, Y )||Q(X, Y )) =
∑
x,y

p(x, y) log
p(x, y)

q(x, y)

=
∑
x,y

p(x)p(y|x) log
p(x)p(y|x)

q(x)q(y|x)

=
∑
x

p(x) log
p(x)

q(x)

∑
y

p(y|x) +
∑
x

p(x)
∑
y

p(y|x) log
p(y|x)

q(y|x)

= D(Px||Qx) +
∑
x

p(x)D(py||qy |X = x)

= D(Px||Qx) +D(Py||Qy |X)

= D(Px||Qx) +D(Py||Qy)

= 2 ·D(P ||Q)

where D(Py||Qy |X) = D(Py||Qy) follows from X being independent of Y . Now, we can
iteratively apply this procedure to determine that D(Pm||Qm) = mD(P ||Q) as desired.

Consider the following set-up for a coin tossing problem. Let 1 = Heads, 0 = Tails, and
define P and Q as:

P =

{
1 w.p. 1

2
− ε

0 w.p. 1
2

+ ε
Q =

{
1 w.p. 1

2

0 w.p. 1
2

Let x = (x1, x2, . . . , xm) be a number of coin flips. We can map x to either P or Q as a
prediction on which distribution they came from. encoding P as 0 and Q as 1. This gives
us a function A:

A : (x1, . . . , xm)→ {0, 1}

We want to find the value of m (i.e. the number of samples) we need to ensure that A
predicts between P and Q with > 90% probability. Explicitly, we want to find m such that:

Px∈Pm [A(x) = 0] ≥ 9

10
and Px∈Qm [A(x) = 1] ≥ 9

10

Equivalently, when taking the expectation over all m-tuples in Pm and Qm, we want:

Ex∈Pm [A(x)] ≤ 1

10
and Ex∈Qm [A(x)] ≥ 9

10
=⇒ Ex∈Qm [A(X)]− Ex∈Pm [A(X)] ≥ 8

10
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Lemma. P̃ , Q̃ discrete on U , then given f : U → [0, B],

|EP̃ [f(x)]− EQ̃[f(x)]| ≤ B

2
||P̃ − Q̃||1

Proof. We can rewrite the left using expected value, and the law of the unconscious statis-
tician (LOTUS) 2:

|EP̃ [f(x)]− EQ̃[f(x)]| = |
∑
x

p̃(x)f(x)−
∑
x

q̃(x)f(x)|

= |
∑
x

f(x)(p̃(x)− q̃(x))|

=

∣∣∣∣∣∑
x

(p̃(x)− q̃(x))

(
f(x)− B

2

)
+
B

2

(∑
x

p̃(x)− q̃(x)

)∣∣∣∣∣
≤
∑
x

|p̃(x)− q̃(x)|
∣∣∣∣f(x)− B

2

∣∣∣∣
≤ B

2
||P̃ − Q̃||1

Now, we can use this lemma: let P̃ = Pm, Q̃ = Qm, f = A, so we have

||Pm −Qm||1 ≥ 2||Ex∈QmA(X)− Ex∈PmA(x)| =⇒ ||Pm −Qm||1 ≥ 2 · 8

10
=

8

5

Now, using Pinsker’s Lemma, we have that:

m ·D(P ||Q) = D(Pm||Qm) ≥ 1

2 ln(2)
·
(

8

5

)2

=⇒ m ≥ 1

2 ln(2) ·D(P ||Q)
·
(

8

5

)2

Thus, it remains to bound D(P ||Q):

D(P ||Q) =

(
1

2
− ε
)

log

( 1
2
− ε
1
2

)
+

(
1

2
+ ε

)
log

( 1
2

+ ε
1
2

)
=

1

2
log

(
(1− 2ε)(1 + 2ε) + ε log

(
1 + 2ε

1− 2ε

))
≤ ε

ln 2
ln

(
1 +

4ε

1− 2ε

)
≤ 4ε2

ln 2
· 1

1− 2ε

2https://en.wikipedia.org/wiki/Law of the unconscious statistician
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where the last inequality uses the fact that ln(1 + x) ≤ ex. Now, if we assume that ε < 1
4
,

we can write:

D(P ||Q) ≤ 8ε2

ln 2

Finally, combining this with the above inequality, we have a bound on m:

m ≥ 1

2 ln(2) ·D(P ||Q)
·
(

8

5

)2

≥ 4

25ε2

which can be shown to be upto constants by the Chernoff bound.
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