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In our first lectures, we proved the Loomis-Whitney inequality, which pro-
vides an upper limit on the size of a set S in d dimensions in terms of the sizes
of its projection onto each dimension. In this lecture, we will show that the
Loomis-Whitney inequality is stable. The proof of stability is due to Ellis et al.
[1].

We begin by defining notation:

• For a set S ⊂ Zd and A ⊂ [d], let π[A](S) be the projection of S onto the
subspace spanned by the vectors {ei, i ∈ A}.

Theorem 1 (Loomis-Whitney Inequality) If S ⊆ Zd and π[d]\i(S) is the
projection of S onto the plane perpendicular to the axis xi, then

|S| ≤
d∏

i=1

|π[d]\i(S)|1/(d−1)

In the case of equality, then S = π1(S)× ...× πd(S).

Intuitively, this states that the size of a set is bounded by the size of a
“box” formed by the projections of the set onto lower dimensional planes. The
second statement says that if |S|d−1 is equal to the size of the product of its
(d−1)-dimensional projections, then S itself is the product of its one-dimensional
projections.

Today, our goal is to prove that the Loomis-Whitney inequality is stable. If
a set S is close to satisfying the Loomis-Whitney upper bound, is S then also
almost a product of one-dimensional sets?

More formally, suppose we have S ⊆ Zd and a box B = B1 × ...Bd where
Bi ⊆ Z. Now suppose that

|S| ≤ (1− ε)
d∏

i=1

|π[d]\i(S)|1/(d−1) (1)

where ε ≥ 0. Then does there exist a constant cd that satisfies the following
inequality:

|S4B| ≤ cdε|S| (2)

In other words, can I pick a point from S that will also fall within B with
probability 1−ε? It turns out the answer is yes, and we will show that the value
of this constant cd is at most 64d4.
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1 Basic notions and notation

Let S be a set as defined in equation 1 and X be a random variable on Zd where
X ∼ Uni(S) and supp(X) = {x ∈ Zd : Pr(X = x) > 0}. If X = (X1, ..., Xd),
then the i-th marginal of X is the distribution of the random variable Xi.

The independent coupling of X, denoted X̂ = (X̂1, ..., X̂d) is the random

variable such that X̂i
d
= Xi (have the same distribution) but X̂i are mutually

independent of each other and from X. There are two properties of their KL-
divergence D(X‖X̂) which will be important in the proof of Loomis-Whitney
stability.

The first property relates the divergence between X and X̂ with the diver-
gence of the distributions X[i] of X.

D(X‖X̂) =

d∑
i=2

D(X[i]‖X[i−1]; X̂i) (3)

The second property states that the KL-divergence is simply the total mutual
information between the marginals of X:

D(X[i]‖X[i−1]; X̂i) = I(Xi, X[i−1]) (4)

Mutual information between two random variables is defined as

I(X,Y ) = H(X) +H(Y )−H(X,Y )

and applying a function on one of them reduces the total mutual information
(referred to as monotonicity of mutual information).

I(X,Y ) ≥ I(f(X), Y )

2 Supporting Lemmas

To prove stability, we need the following two lemmas.

Lemma 2 Suppose S ⊆ Zd satisfies Equation 1. Let X ∼ Uni(S) and X̂ is the
independent coupling of X. Then for all 1 ≤ i ≤ d,

I(X[d]\i, Xi) ≤ 2dε

Definition 3 The “hole-weight” of S is defined as:

Hole(S) = Pr(X̂ /∈ S)
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Lemma 4 Suppose S ⊆ Zd and 0 < α < 1. Then ∃S1, ..., Sd ⊆ Z with:

Pr(Xi /∈ Si) ≤
2 ∗Hole(S)

α

and further, for any xi ∈ Si,

Pr(Xi = xi) ≥
(

1− Hole(S)

α

)(
1− α
|Si|

)

So, Lemma 4 states that if Hole(S) is small, then there is a set Si in Z such
that Xi places most of its mass on Si and the distribution of Xi is nearly uniform
on Si. To connect Lemma 2 with Lemma 4, we have the following claim:

Claim 5
Hole(S) ≤ D(X‖X̂)

Proof By the definition of KL divergence: D(X‖X̂) = E[− log(q(X̂)/p(X))],
where p and q are the probability densities of X and X̂, respectively. Because
x→ − log(x) is convex, we can apply Jensen’s inequality, so we get D(X‖X̂) ≥
− log(E[q(X̂)/p(X)]). However, E[q(X̂)/p(X)] = Pr(X̂ ∈ supp(X)). Then we
have:

D(X‖X̂) ≥ − log(Pr(X̂ ∈ supp(X)))

Since Pr(X̂ ∈ supp(X)) = 1−Pr(X̂ /∈ supp(X)), and − log(1−x) ≥ x, we have:

D(X‖X̂) ≥ Pr(X̂ /∈ supp(X))

Note that supp(X) = S because X ∼ Uni(S). Therefore

Pr(X̂ /∈ supp(X)) = Hole(S)

D(X‖X̂) ≥ Hole(S)

3 Proof of LW stability

Suppose Equation 1 holds. We assume ε < 64d3 to avoid a trivial result. Apply
Lemma 2 and the monotonicity of mutual information to Equation 4 and we
get:

D(X‖X̂) ≤ 2d2ε
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Now, apply Lemma 4, which states that ∃S1, ..., Sd ⊆ Z such that

Pr(xi /∈ Si) ≤
2Hole(S)

α

Take α = 1/d, and apply claim 5. Then this becomes:

≤ 2dHole(S) ≤ 4d3ε

Now, let box B = S1 × ...× Sd. Then we have:

Pr(X /∈ B) =
|S \B|
|S|

≤
∑
i

Pr(Xi /∈ Si) ≤ 4d4ε

|S \B| ≤ 4d4ε|S|

For x = (x1, ..., xd) ∈ B \ S, if we assume ε < 64d3 and apply some basic
simplification, we get:

Pr(Xi = xi) ≥
1

|Si|

(
1− 1

d

)2

And so, by taking the product of this for all i, we get:

Pr(X = x) ≥ 1

|B|

(
1− 1

d

)2d

By summing this over all x in |B \ S|:

|B \ S|
|B|

≤
(

1− 1

d

)−2d
∗
∑

x∈B\S

Pr(X̂ = x)

This sum is the probability that X̂ is in B \ S. Observe that

Pr(X̂ ∈ B \ S) ≤ Pr(X̂ /∈ S)

And since the right hand side is the definition of Hole(S), we have:

|B \ S|
|B|

≤
(

1− 1

d

)−2d
∗Hole(S)

≤ 32d3ε

We need to establish some upper bound on |S| in terms of B.

|S| ≥ |S ∩B| = |B| − |B \ S| ≥ (1− 32d3ε)|B|
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So it follows that

|B/S|
|S|

≤ 32d3ε

(1− 32d3ε)
≤ 64d3ε.

Finally, we can compute |S4B|.

|S4B| ≤ |S \B|+ |B \ S|
= (4d4ε+ 64d3ε)|S|
≤ 64d4ε|S|

for ε < 64d3.

4 Proof of Lemma 2

Let X ∼ Uni(S). Without loss of generality, we may prove the lemma for the
case i = d. If Equation 1 holds, then:

log |S| ≥ 1

d− 1

d∑
j=1

log |π[d]\j(s)|+ log(1− ε) (5)

Since H(X) = log |S| (because X ∼ Uni(S)) and H(X[d]\j]) ≤ log |π[d]\j](S)|,
this expression becomes

1

d− 1

∑
j

H(X[d]\j])−H(X) ≤ − log(1− ε) (6)

Apply Taylor expansion on the righthand side.

− log(1− x) =
∑
k

xk

k
≤ 2x for 0 ≤ x ≤ 1

2
(7)

1

d− 1

∑
j

H(X[d]\j])−H(X) ≤ 2ε for ε < 1/2 (8)

We need to understand this difference on the lefthand side. Let’s examine the
summand. Applying the chain rule of entropy gives:

H(X[d]\j]) = H(Xd) +H(X[d−1]\j |Xd), j 6= d (9)
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Now the lefthand side of this expression becomes:

H(Xd) +
H(X[d−1])

d− 1
+

1

d− 1

∑
j<d

H(X[d−1]\j |Xd)−H(X)

=
H(X[d−1])

d− 1
+

1

d− 1

∑
j<d

H(X[d−1]\j |Xd)−H(X[d−1]|Xd) (10)

Once again, let’s look at the summand here:

H(X[d−1]\j |Xd) =
∑

k<d,k 6=j

H(Xk|X[k−1]\j ;Xd) (11)

Because conditional entropy decreases when conditioning over a larger set of
random variables:

H(Xk|X[k−1]\j , Xd) ≥ H(Xk|X[k−1], Xd) (12)

So, substituting this into (11):

H(X[d−1]\j]|Xd) ≥
∑
k

H(Xk|X[k−1];Xd)

=

(
d−1∑
k=1

H(Xk|X[k−1], Xd)

)
−H(Xj |X[j−1], Xd) (13)

= H(X[d−1]|Xd)−H(Xj |X[j−1], Xd) (14)

This expression was part of a summation over j, so after summing over j, we
conclude that:∑

j<d

H(X[d−1]\j |Xd) ≥ (d− 1)H(X[d−1]|Xd)−
∑
j<d

H(Xj |X[j−1], Xd)

= (d− 1)H(X[d−1]|Xd)−H(X[d−1]|Xd)

= (d− 2)H(X[d−1]|Xd) (15)

Now we substitute this back into (10), and we find:

(10) ≥
H(X[d−1])

d− 1
−H(X[d−1]|Xd) +

d− 2

d− 1
H(X[d−1]|Xd)

=
H(X[d−1])−H(X[d−1]|Xd)

d− 1

=
I(X[d−1], Xd)

d− 1
(16)

So, from (8) and (16), we finally get:

I(X[d−1], Xd) ≤ 2ε(d− 1)

≤ 2dε (17)
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