CS 229r Information Theory in Computer Science

Lecture 8
Lecturer: Mustazee Rahman
Scribe: Sam Xi

In our first lectures, we proved the Loomis-Whitney inequality, which provides an upper limit on the size of a set S in d dimensions in terms of the sizes of its projection onto each dimension. In this lecture, we will show that the Loomis-Whitney inequality is stable. The proof of stability is due to Ellis et al. [1].

We begin by defining notation:

- For a set $S \subset \mathbb{Z}^{d}$ and $A \subset[d]$, let $\pi_{[A]}(S)$ be the projection of S onto the subspace spanned by the vectors $\left\{e_{i}, i \in A\right\}$.

Theorem 1 (Loomis-Whitney Inequality) If $S \subseteq \mathbb{Z}^{d}$ and $\pi_{[d] \backslash i}(S)$ is the projection of S onto the plane perpendicular to the axis x_{i}, then

$$
|S| \leq \prod_{i=1}^{d}\left|\pi_{[d] \backslash i}(S)\right|^{1 /(d-1)}
$$

In the case of equality, then $S=\pi_{1}(S) \times \ldots \times \pi_{d}(S)$.
Intuitively, this states that the size of a set is bounded by the size of a "box" formed by the projections of the set onto lower dimensional planes. The second statement says that if $|S|^{d-1}$ is equal to the size of the product of its ($d-1$)-dimensional projections, then S itself is the product of its one-dimensional projections.

Today, our goal is to prove that the Loomis-Whitney inequality is stable. If a set S is close to satisfying the Loomis-Whitney upper bound, is S then also almost a product of one-dimensional sets?

More formally, suppose we have $S \subseteq \mathbb{Z}^{d}$ and a box $B=B_{1} \times \ldots B_{d}$ where $B_{i} \subseteq \mathbb{Z}$. Now suppose that

$$
\begin{equation*}
|S| \leq(1-\epsilon) \prod_{i=1}^{d}\left|\pi_{[d] \backslash i}(S)\right|^{1 /(d-1)} \tag{1}
\end{equation*}
$$

where $\epsilon \geq 0$. Then does there exist a constant c_{d} that satisfies the following inequality:

$$
\begin{equation*}
|S \triangle B| \leq c_{d} \epsilon|S| \tag{2}
\end{equation*}
$$

In other words, can I pick a point from S that will also fall within B with probability $1-\epsilon$? It turns out the answer is yes, and we will show that the value of this constant c_{d} is at most $64 d^{4}$.

1 Basic notions and notation

Let S be a set as defined in equation 1 and X be a random variable on \mathbb{Z}^{d} where $X \sim U n i(S)$ and $\operatorname{supp}(X)=\left\{x \in \mathbb{Z}^{d}: \operatorname{Pr}(X=x)>0\right\}$. If $X=\left(X_{1}, \ldots, X_{d}\right)$, then the i-th marginal of X is the distribution of the random variable X_{i}.

The independent coupling of X, denoted $\hat{X}=\left(\hat{X}_{1}, \ldots, \hat{X}_{d}\right)$ is the random variable such that $\hat{X}_{i} \stackrel{d}{=} X_{i}$ (have the same distribution) but \hat{X}_{i} are mutually independent of each other and from X. There are two properties of their KLdivergence $D(X \| \hat{X})$ which will be important in the proof of Loomis-Whitney stability.

The first property relates the divergence between X and \hat{X} with the divergence of the distributions $X_{[i]}$ of X.

$$
\begin{equation*}
D(X \| \hat{X})=\sum_{i=2}^{d} D\left(X_{[i]} \| X_{[i-1]} ; \hat{X}_{i}\right) \tag{3}
\end{equation*}
$$

The second property states that the KL-divergence is simply the total mutual information between the marginals of X :

$$
\begin{equation*}
D\left(X_{[i]} \| X_{[i-1]} ; \hat{X}_{i}\right)=I\left(X_{i}, X_{[i-1]}\right) \tag{4}
\end{equation*}
$$

Mutual information between two random variables is defined as

$$
I(X, Y)=\mathcal{H}(X)+\mathcal{H}(Y)-\mathcal{H}(X, Y)
$$

and applying a function on one of them reduces the total mutual information (referred to as monotonicity of mutual information).

$$
I(X, Y) \geq I(f(X), Y)
$$

2 Supporting Lemmas

To prove stability, we need the following two lemmas.
Lemma 2 Suppose $S \subseteq \mathbb{Z}^{d}$ satisfies Equation 1. Let $X \sim U n i(S)$ and \hat{X} is the independent coupling of X. Then for all $1 \leq i \leq d$,

$$
I\left(X_{[d] \backslash i}, X_{i}\right) \leq 2 d \epsilon
$$

Definition 3 The "hole-weight" of S is defined as:

$$
\operatorname{Hole}(S)=\operatorname{Pr}(\hat{X} \notin S)
$$

Lemma 4 Suppose $S \subseteq \mathbb{Z}^{d}$ and $0<\alpha<1$. Then $\exists S_{1}, \ldots, S_{d} \subseteq \mathbb{Z}$ with:

$$
\operatorname{Pr}\left(X_{i} \notin S_{i}\right) \leq \frac{2 * \operatorname{Hole}(S)}{\alpha}
$$

and further, for any $x_{i} \in S_{i}$,

$$
\operatorname{Pr}\left(X_{i}=x_{i}\right) \geq\left(1-\frac{\operatorname{Hole}(S)}{\alpha}\right)\left(\frac{1-\alpha}{\left|S_{i}\right|}\right)
$$

So, Lemma 4 states that if $\operatorname{Hole}(S)$ is small, then there is a set S_{i} in \mathbb{Z} such that X_{i} places most of its mass on S_{i} and the distribution of X_{i} is nearly uniform on S_{i}. To connect Lemma 2 with Lemma 4, we have the following claim:

Claim 5

$$
\operatorname{Hole}(S) \leq D(X \| \hat{X})
$$

Proof By the definition of KL divergence: $D(X \| \hat{X})=\mathbb{E}[-\log (q(\hat{X}) / p(X))]$, where p and q are the probability densities of X and \hat{X}, respectively. Because $x \rightarrow-\log (x)$ is convex, we can apply Jensen's inequality, so we get $D(X \| \hat{X}) \geq$ $-\log (\mathbb{E}[q(\hat{X}) / p(X)])$. However, $\mathbb{E}[q(\hat{X}) / p(X)]=\operatorname{Pr}(\hat{X} \in \operatorname{supp}(X))$. Then we have:

$$
D(X \| \hat{X}) \geq-\log (\operatorname{Pr}(\hat{X} \in \operatorname{supp}(X)))
$$

Since $\operatorname{Pr}(\hat{X} \in \operatorname{supp}(X))=1-\operatorname{Pr}(\hat{X} \notin \operatorname{supp}(X))$, and $-\log (1-x) \geq x$, we have:

$$
D(X \| \hat{X}) \geq \operatorname{Pr}(\hat{X} \notin \operatorname{supp}(X))
$$

Note that $\operatorname{supp}(X)=S$ because $X \sim U n i(S)$. Therefore

$$
\begin{array}{r}
\operatorname{Pr}(\hat{X} \notin \operatorname{supp}(X))=\operatorname{Hole}(S) \\
D(X \| \hat{X}) \geq \operatorname{Hole}(S)
\end{array}
$$

3 Proof of LW stability

Suppose Equation 1 holds. We assume $\epsilon<64 d^{3}$ to avoid a trivial result. Apply Lemma 2 and the monotonicity of mutual information to Equation 4 and we get:

$$
D(X \| \hat{X}) \leq 2 d^{2} \epsilon
$$

Now, apply Lemma 4 , which states that $\exists S_{1}, \ldots, S_{d} \subseteq \mathbb{Z}$ such that

$$
\operatorname{Pr}\left(x_{i} \notin S_{i}\right) \leq \frac{2 \operatorname{Hole}(S)}{\alpha}
$$

Take $\alpha=1 / d$, and apply claim 5 . Then this becomes:

$$
\leq 2 d \operatorname{Hole}(S) \leq 4 d^{3} \epsilon
$$

Now, let box $B=S_{1} \times \ldots \times S_{d}$. Then we have:

$$
\begin{gathered}
\operatorname{Pr}(X \notin B)=\frac{|S \backslash B|}{|S|} \leq \sum_{i} \operatorname{Pr}\left(X_{i} \notin S_{i}\right) \leq 4 d^{4} \epsilon \\
|S \backslash B| \leq 4 d^{4} \epsilon|S|
\end{gathered}
$$

For $x=\left(x_{1}, \ldots, x_{d}\right) \in B \backslash S$, if we assume $\epsilon<64 d^{3}$ and apply some basic simplification, we get:

$$
\operatorname{Pr}\left(X_{i}=x_{i}\right) \geq \frac{1}{\left|S_{i}\right|}\left(1-\frac{1}{d}\right)^{2}
$$

And so, by taking the product of this for all i, we get:

$$
\operatorname{Pr}(X=x) \geq \frac{1}{|B|}\left(1-\frac{1}{d}\right)^{2 d}
$$

By summing this over all x in $|B \backslash S|$:

$$
\frac{|B \backslash S|}{|B|} \leq\left(1-\frac{1}{d}\right)^{-2 d} * \sum_{x \in B \backslash S} \operatorname{Pr}(\hat{X}=x)
$$

This sum is the probability that \hat{X} is in $B \backslash S$. Observe that

$$
\operatorname{Pr}(\hat{X} \in B \backslash S) \leq \operatorname{Pr}(\hat{X} \notin S)
$$

And since the right hand side is the definition of $\operatorname{Hole}(S)$, we have:

$$
\begin{aligned}
\frac{|B \backslash S|}{|B|} & \leq\left(1-\frac{1}{d}\right)^{-2 d} * \operatorname{Hole}(S) \\
& \leq 32 d^{3} \epsilon
\end{aligned}
$$

We need to establish some upper bound on $|S|$ in terms of B.

$$
|S| \geq|S \cap B|=|B|-|B \backslash S| \geq\left(1-32 d^{3} \epsilon\right)|B|
$$

So it follows that

$$
\frac{|B / S|}{|S|} \leq \frac{32 d^{3} \epsilon}{\left(1-32 d^{3} \epsilon\right)} \leq 64 d^{3} \epsilon
$$

Finally, we can compute $|S \triangle B|$.

$$
\begin{aligned}
|S \triangle B| & \leq|S \backslash B|+|B \backslash S| \\
& =\left(4 d^{4} \epsilon+64 d^{3} \epsilon\right)|S| \\
& \leq 64 d^{4} \epsilon|S|
\end{aligned}
$$

for $\epsilon<64 d^{3}$.

4 Proof of Lemma 2

Let $X \sim \operatorname{Uni}(S)$. Without loss of generality, we may prove the lemma for the case $i=d$. If Equation 1 holds, then:

$$
\begin{equation*}
\log |S| \geq \frac{1}{d-1} \sum_{j=1}^{d} \log \left|\pi_{[d] \backslash j}(s)\right|+\log (1-\epsilon) \tag{5}
\end{equation*}
$$

Since $\mathcal{H}(X)=\log |S|$ (because $X \sim U n i(S)$) and $\mathcal{H}\left(X_{[d] \backslash j]}\right) \leq \log \left|\pi_{[d] \backslash j]}(S)\right|$, this expression becomes

$$
\begin{equation*}
\frac{1}{d-1} \sum_{j} \mathcal{H}\left(X_{[d] \backslash j]}\right)-\mathcal{H}(X) \leq-\log (1-\epsilon) \tag{6}
\end{equation*}
$$

Apply Taylor expansion on the righthand side.

$$
\begin{gather*}
-\log (1-x)=\sum_{k} \frac{x^{k}}{k} \leq 2 x \text { for } 0 \leq x \leq \frac{1}{2} \tag{7}\\
\frac{1}{d-1} \sum_{j} \mathcal{H}\left(X_{[d] \backslash j]}\right)-\mathcal{H}(X) \leq 2 \epsilon \text { for } \epsilon<1 / 2 \tag{8}
\end{gather*}
$$

We need to understand this difference on the lefthand side. Let's examine the summand. Applying the chain rule of entropy gives:

$$
\begin{equation*}
\mathcal{H}\left(X_{[d] \backslash j]}\right)=\mathcal{H}\left(X_{d}\right)+\mathcal{H}\left(X_{[d-1] \backslash j} \mid X_{d}\right), j \neq d \tag{9}
\end{equation*}
$$

Now the lefthand side of this expression becomes:

$$
\begin{align*}
\mathcal{H}\left(X_{d}\right) & +\frac{\mathcal{H}\left(X_{[d-1]}\right)}{d-1}+\frac{1}{d-1} \sum_{j<d} \mathcal{H}\left(X_{[d-1] \backslash j} \mid X_{d}\right)-H(X) \\
& =\frac{\mathcal{H}\left(X_{[d-1]}\right)}{d-1}+\frac{1}{d-1} \sum_{j<d} \mathcal{H}\left(X_{[d-1] \backslash j} \mid X_{d}\right)-\mathcal{H}\left(X_{[d-1]} \mid X_{d}\right) \tag{10}
\end{align*}
$$

Once again, let's look at the summand here:

$$
\begin{equation*}
\mathcal{H}\left(X_{[d-1] \backslash j} \mid X_{d}\right)=\sum_{k<d, k \neq j} \mathcal{H}\left(X_{k} \mid X_{[k-1] \backslash j} ; X_{d}\right) \tag{11}
\end{equation*}
$$

Because conditional entropy decreases when conditioning over a larger set of random variables:

$$
\begin{equation*}
\mathcal{H}\left(X_{k} \mid X_{[k-1] \backslash j}, X_{d}\right) \geq \mathcal{H}\left(X_{k} \mid X_{[k-1]}, X_{d}\right) \tag{12}
\end{equation*}
$$

So, substituting this into (11):

$$
\begin{align*}
\mathcal{H}\left(X_{[d-1] \backslash j]} \mid X_{d}\right) & \geq \sum_{k} \mathcal{H}\left(X_{k} \mid X_{[k-1]} ; X_{d}\right) \\
& =\left(\sum_{k=1}^{d-1} \mathcal{H}\left(X_{k} \mid X_{[k-1]}, X_{d}\right)\right)-\mathcal{H}\left(X_{j} \mid X_{[j-1]}, X_{d}\right) \tag{13}\\
& =\mathcal{H}\left(X_{[d-1]} \mid X_{d}\right)-H\left(X_{j} \mid X_{[j-1]}, X_{d}\right) \tag{14}
\end{align*}
$$

This expression was part of a summation over j, so after summing over j, we conclude that:

$$
\begin{align*}
\sum_{j<d} \mathcal{H}\left(X_{[d-1] \backslash j} \mid X_{d}\right) & \geq(d-1) \mathcal{H}\left(X_{[d-1]} \mid X_{d}\right)-\sum_{j<d} \mathcal{H}\left(X_{j} \mid X_{[j-1]}, X_{d}\right) \\
& =(d-1) \mathcal{H}\left(X_{[d-1]} \mid X_{d}\right)-\mathcal{H}\left(X_{[d-1]} \mid X_{d}\right) \\
& =(d-2) \mathcal{H}\left(X_{[d-1]} \mid X_{d}\right) \tag{15}
\end{align*}
$$

Now we substitute this back into (10), and we find:

$$
\begin{align*}
(10) & \geq \frac{\mathcal{H}\left(X_{[d-1]}\right)}{d-1}-\mathcal{H}\left(X_{[d-1]} \mid X_{d}\right)+\frac{d-2}{d-1} \mathcal{H}\left(X_{[d-1]} \mid X_{d}\right) \\
& =\frac{\mathcal{H}\left(X_{[d-1]}\right)-\mathcal{H}\left(X_{[d-1]} \mid X_{d}\right)}{d-1} \\
& =\frac{I\left(X_{[d-1]}, X_{d}\right)}{d-1} \tag{16}
\end{align*}
$$

So, from (8) and (16), we finally get:

$$
\begin{align*}
I\left(X_{[d-1]}, X_{d}\right) & \leq 2 \epsilon(d-1) \\
& \leq 2 d \epsilon \tag{17}
\end{align*}
$$

References

[1] David Ellis and Ehud Friedgut and Guy Kindler and Amir Yehudayoff, Geometric stability via information theory, arXiv:1510.00258, 2015.

