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In our first lectures, we proved the Loomis-Whitney inequality, which pro-
vides an upper limit on the size of a set S in d dimensions in terms of the sizes
of its projection onto each dimension. In this lecture, we will show that the
Loomis-Whitney inequality is stable. The proof of stability is due to Ellis et al.
[1]

We begin by defining notation:

e For aset S C Z% and A C [d], let m4(S) be the projection of S onto the
subspace spanned by the vectors {e;,i € A}.

Theorem 1 (Loomis-Whitney Inequality) If S C Z% and myqp;(S) is the
projection of S onto the plane perpendicular to the axis x;, then

d
S| < [T Imapa ()@=
i=1

In the case of equality, then S = m1(S) X ... x m4q(S).

Intuitively, this states that the size of a set is bounded by the size of a
“box” formed by the projections of the set onto lower dimensional planes. The
second statement says that if |S|9~! is equal to the size of the product of its
(d—1)-dimensional projections, then S itself is the product of its one-dimensional
projections.

Today, our goal is to prove that the Loomis-Whitney inequality is stable. If
a set S is close to satisfying the Loomis-Whitney upper bound, is S then also
almost a product of one-dimensional sets?

More formally, suppose we have S C Z% and a box B = By x ...B; where
B; C Z. Now suppose that

d
(S < (1= o) [T lmapa ()= (1)
i=1

where € > 0. Then does there exist a constant ¢4 that satisfies the following
inequality:
|SAB| < cqelS| (2)

In other words, can I pick a point from S that will also fall within B with
probability 1 —e€? It turns out the answer is yes, and we will show that the value
of this constant ¢y is at most 64d*.




1 Basic notions and notation

Let S be a set as defined in equation 1 and X be a random variable on Z? where
X ~ Uni(S) and supp(X) = {x € Z¢ : Pr(X = 2) > 0}. If X = (X1, ..., Xa),
then the i-th marginal of X is the distribution of the random variable Xj.

The independent coupling of X, denoted X = (X'l, ...,Xd) is the random

variable such that X; e X, (have the same distribution) but X, are mutually
independent of each other and from X. There are two properties of their KL-
divergence D(X||X) which will be important in the proof of Loomis-Whitney
stability.

The first property relates the divergence between X and X with the diver-
gence of the distributions Xp; of X.

d
D(X||X) =Y DXyl Xp-j; Xi) (3)

=2

The second property states that the KL-divergence is simply the total mutual
information between the marginals of X:

D(Xiy | X1y Xi) = 1(Xi, Xji—)) (4)
Mutual information between two random variables is defined as

I(X,Y) =H(X) + H(Y) - H(X,Y)

and applying a function on one of them reduces the total mutual information
(referred to as monotonicity of mutual information).

I(X,Y) > I(f(X),Y)

2 Supporting Lemmas
To prove stability, we need the following two lemmas.

Lemma 2 Suppose S C Z@ satisfies Equation 1. Let X ~ Uni(S) and X is the
independent coupling of X. Then for all 1 < i <d,

I(X[d]\i, X;) < 2de

Definition 3 The “hole-weight” of S is defined as:

Hole(S) = Pr(X ¢ S)
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Lemma 4 Suppose S C Z% and 0 < o < 1. Then 354, ...,Sq C Z with:

2 x Hole(S)

and further, for any x; € S;,
Hole(S) 1-a
Pr(X;=x;) > (1 5 ) < 15,1 >

So, Lemma 4 states that if Hole(.S) is small, then there is a set \S; in Z such
that X; places most of its mass on S; and the distribution of X is nearly uniform
on S;. To connect Lemma 2 with Lemma 4, we have the following claim:

Claim 5 .
Hole(S) < D(X||X)

Proof By the definition of KL divergence: D(X||X) = E[—1log(¢(X)/p(X))],
where p and ¢ are the probability densities of X and X, respectively. Because
x — —log(w) is convex, we can apply Jensen’s inequality, so we get D(X|X) >
—log(E[¢(X)/p(X)]). However, E[¢q(X)/p(X)] = Pr(X € supp(X)). Then we
have:

D(X||X) = ~log(Pr(X € supp(X)))

Since Pr(X € supp(X)) = 1—Pr(X ¢ supp(X)), and — log(1—xz) > x, we have:
D(X||X) = Pr(X ¢ supp(X))

Note that supp(X) = S because X ~ Uni(S). Therefore

Pr(X ¢ supp(X)) = Hole(S)
D(X|X) > Hole(S)

3 Proof of LW stability

Suppose Equation 1 holds. We assume € < 64d> to avoid a trivial result. Apply
Lemma 2 and the monotonicity of mutual information to Equation 4 and we
get:

D(X||X) < 2d%
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Now, apply Lemma 4, which states that 351, ...,.S4 C Z such that

2Hole(S)
a

Pr(z; ¢ S;) <
Take o = 1/d, and apply claim 5. Then this becomes:

< 2dHole(S) < 4d®¢

Now, let box B =57 X ... X §4. Then we have:

Pr(X ¢ B) = |S|gB| <ZPr 5) < 4dte
|S\ B| < 4d*¢|S]

For z = (z1,...,4q4) € B\ S, if we assume ¢ < 64d> and apply some basic
simplification, we get:

1 1\?
P =T) > 1--
PriXe =) 2 3, < d)

And so, by taking the product of this for all ¢, we get:

1 1 2d
Pr(X = > 1— -
X =2 |B|( d)

By summing this over all z in |B\ S]:

1B\ S| 1~ o
B S(l—d) * Z Pr(X =x)

This sum is the probability that X isin B \ S. Observe that
Pr(X € B\ S) <Pr(X ¢ S)

And since the right hand side is the definition of Hole(S), we have:

—2d
|B|g|5| < (1 - ;) * Hole(.9)

< 32d3¢

We need to establish some upper bound on |S| in terms of B.

S| > SN B| = B| - |B\ S| > (1 - 32d°)| B]
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So it follows that

|B/S| 32d3¢
<

< 64d>e.
S| = (1—32d8¢) = €

Finally, we can compute |SAB].

|ISAB| < [S\ B| +|B\ 5|
= (4d*c + 64d°¢)|S|
< 64de|S|

for € < 64d3.

4 Proof of Lemma 2

Let X ~ Uni(S). Without loss of generality, we may prove the lemma for the
case i = d. If Equation 1 holds, then:

d
1
log|S| > 1 Zlog |7 (8)| + log(1 — ) (5)
j=1

Since H(X) = log|S| (because X ~ Uni(S)) and H(X(ap ;) < log|map;1(S)I,
this expression becomes

ﬁ ZH(X[d]\j]) —H(X) < —log(1 —¢) (6)

Apply Taylor expansion on the righthand side.
k

flog(lfx):Z%SQxforOng% (7)
k

1
—1 D H(Xgpg)) — H(X) < 2€ for e < 1/2 (8)
J

We need to understand this difference on the lefthand side. Let’s examine the
summand. Applying the chain rule of entropy gives:
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Now the lefthand side of this expression becomes:

H(X(g-1)) 1
H(Xa) + — +d_1j;i%(x[d_l]\j\xd)—ﬂ(x>

H(X(d-1)) 1
= +t o ;H(X[d—l]\j\Xd) = H(X(g—1)|Xa) (10)
J

d—1
Once again, let’s look at the summand here:

H(Xa-1)\j1Xa) = Z H( Xk | Xp—1)\s3 Xa) (11)
k<d,k#j

Because conditional entropy decreases when conditioning over a larger set of
random variables:

H(Xe| Xip—1)\j> Xa) > H(Xk| X1}, Xa) (12)

So, substituting this into (11):

H(Xpamip g1 Xa) = D> H(Xk] X1y Xa)
k

k=1
= H(Xja—ylXa) — H(X;|X[j-1), Xa) (14)

d—1
= (ZH(XHXUCH,X@) = H(X;|X 1), Xa)  (13)

This expression was part of a summation over j, so after summing over j, we
conclude that:

S H(X - 1Xa) > (d = DH(X gyl Xa) = D HXG X1, Xa)
j<d j<d
= (d = DH(X(a—1)|Xa) = H(X(a—1)| Xa)
= (d — 2)H(X[4_1)| Xa) (15)

Now we substitute this back into (10), and we find:

H(X iy 1) d—2
(10) > =8 — H(X(ay [ Xa) + T H(X gy Xa)

- H( X)) — H(X gyl Xa)

B d—1
I(X d—1 aXd)

= 72 7]1 (16)

So, from (8) and (16), we finally get:
I(X[d_l],Xd) < 2€(d - 1)
< 2de (17)
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