Lecture 10

Lecturer: Madhu Sudan

Scribe: Nathan Manohar

Overview

Today:

- 1. Wrap Up Inner Product Lower Bound
- 2. Introduce Information Complexity Lower Bound for Set Disjointness

Review:

- 1. Communication Complexity (deterministic and probabilistic)
- 2. Rank Lower Bound (for deterministic)
- 3. Discrepancy (for randomized)

1 Inner Product (Madhu)

$$\operatorname{IP}(x,y) = \prod_{i=1}^{n} (-1)^{x_i \wedge y_i}$$

and

$$\mu = \text{UNIF}(\{0, 1\}^n \times \{0, 1\}^n)$$

$$M_{\mu,\mathrm{IP}} = [M_{\mu,IP}(x,y)]_{x,y}$$

where $M_{\mu,IP}(x,y) = 4^{-n} \cdot IP(x,y)$. We have that

$$\operatorname{Disc}(M,R) = |\sum_{(x,y)} R(x,y) \cdot M(x,y)|$$

We define

$$\operatorname{Disc}(M) = \max_{\operatorname{rectangles } R} \{\operatorname{Disc}(M, R)\}$$

We have that

$$\operatorname{Disc}(M) \le (1 - \varepsilon) \cdot 2^{-k} \implies CL_{\varepsilon}(\operatorname{IP}) \ge k$$

If we rewrite $\operatorname{Disc}(M)$, we can express this as

$$Disc(M) = \max_{S,T \subset \{0,1\}^n} |\sum_{x \in S, y \in T} M(x,y)|$$

$$= \max_{U,V \in \{0,1\}^{2^n}} |U^T \cdot M \cdot V|$$

$$\leq \max_{U,V \in \mathbb{R}^{2^n}, ||U||_2, ||V||_2 \le 2^{n/2}} |U^T \cdot M \cdot V|$$

$$= 2^n \lambda_{\max}(M)$$

$$M_{\mu_1, \mathrm{IP}_1} = \left(\begin{array}{cc} 1/4 & 1/4\\ 1/4 & -1/4 \end{array}\right)$$

which has eigenvalues $\pm \frac{1}{\sqrt{8}}$. So, the maximum eigenvalue of $M_{\mu,\text{IP}}$ is $(\frac{1}{\sqrt{8}})^n$, so we have that

Disc(M)
$$\leq 2^n \lambda_{\max}(M) = 2^n (\frac{1}{\sqrt{8}})^n = 2^{-n/2}$$

2 Information Complexity (Alex + Minjae)

Outline

- 1. Set disjointness
- 2. Information complexity
- 3. IC \leq CC
- 4. choice of distribution

5.
$$IC^n \ge n \cdot IC^1$$

6.
$$IC^1 = \Omega(1)$$

Definition 1 (Set Disjointness Problem) Let $x, y \in \{0,1\}^n$. We define $Disj(x,y) = \bigvee_{i=1}^n (x_i \wedge y_i)$. In particular, we have that

$$Disj(x,y) = \begin{cases} 1 & if \ \exists i, x_i = y_i = 1 \\ 0 & otherwise \end{cases}$$

2.1 Notation

f is a function from $\{0,1\}^n \times \{0,1\}^n$ to $\{0,1\}$. μ is a distribution of $\{0,1\}^n \times \{0,1\}^n$. ε is the error parameter. π is the ε -error protocol for computing f (meaning π computes f correctly on every input with error probability $\leq \varepsilon$). $\pi(x, y, R, R_A, R_B)$ is the transcript of π with inputs x, y.

Definition 2 Information Cost of π for computing f with respect to μ, ε is defined as

$$IC^{\pi}_{\mu,\varepsilon}(f) = I(X,Y;\pi|R)$$

2.2 Ex. 1-bit AND

 $x, y \in \{0, 1\}$. Want to compute $f(x, y) = x \wedge y$.

Protocol:

 δ error, $k >> \frac{1}{\delta}$. Repeat the following k times.

$$A \to B \begin{cases} 1 & \text{w.p. } 1 - \delta \\ X & \text{w.p. } \delta \end{cases}$$

and

$$B \to A \begin{cases} 1 \text{ w.p. } 1 - \delta \\ Y \text{ w.p. } \delta \end{cases}$$

If either is 0, output 0. Else, output 1. We see that the probability of error is

$$(1-\delta)^k \le e^{\delta k} = \varepsilon$$

The information cost is

$$IC^{\pi}_{\mu,\varepsilon}(f) = I(X,Y;\pi) = H(X,Y) - H(X,Y|\pi) \le \log_2 4 = 2$$

The bound is strictly less than 2 because in the case where $x \wedge y = 0$, we might only learn that one of the bits is 0 and be unsure about the other bit.

Lemma 3 $IC_{\mu,\varepsilon}(f) \leq CC_{\varepsilon}(f) \ \forall \mu, \varepsilon > 0$

Proof $CC_{\varepsilon}(f) = |\pi^*|$, the max length of π . $CC_{\varepsilon}(f) = |\pi^0| \ge H(\pi)$. However, $IC_{\mu,\varepsilon}(f) = I(X,Y;\pi) \le H(\pi)$.

The main theorem we want to show is

Theorem 4 $IC_{\mu,f}(Disj) = \Omega(n)$

To prove this, we prove lemmas that roughly state the following

Lemma 5 (Informal) $IC(Disj^n) \ge n \cdot IC(Disj^1)$

Lemma 6 (Informal) $IC(Disj^1) \ge \Omega(1)$

Choice of Distribution:

To prove this, we will make use of the following distribution.

$$Z_i \sim \text{Unif}(\{0,1\})$$

If $Z_i = 0$, then $X_i = 0$ and $Y_i \sim \text{Unif}(\{0, 1\})$. If $Z_i = 1$, then $Y_i = 0$ and $X_i \sim \text{Unif}(\{0, 1\})$.

$$(X_i, Y_i, Z_i) \sim \eta$$
$$Z = (Z_1, \dots, Z_n)$$
$$(X, Y, Z) \sim \zeta = \eta^n$$

Properties of ζ :

- 1. $\forall x, y \in \text{Supp}(\zeta), Disj(x, y) = 0$
- 2. $\forall Z \in \{0, 1\}^n, X \perp Y | Z$
- 3. $(X_i, Y_i) \perp \{(X_j, Y_j)\}_{j \neq i}$

Definition 7 (Conditional Information Cost) $CIC^{\pi}_{\zeta,\varepsilon}(f) = I(X,Y;\pi|Z)$

Definition 8 (Conditional Information Complexity) $CIC_{\zeta,\varepsilon}(f) = \min_{\pi} \{CIC_{\zeta,\varepsilon}^{\pi}(f)\}$

Lemma 9 $CIC_{\zeta,\varepsilon}(f) \leq IC_{\mu,\varepsilon}(f)$ where $\mu = \zeta |Z$

Proof $CIC_{\zeta,\varepsilon}(f) = I(X,Y;\pi|Z) = H(\pi|Z) - H(\pi|X,Y,Z)$. $IC_{\mu^n,\varepsilon}(f) = I(X,Y;\pi) = H(\pi) - H(\pi|X,Y)$. Since $H(\pi|X,Y) = H(\pi|X,Y,Z)$ and $H(\pi) \ge H(\pi|Z)$, the result follows.

Lemma 10 $CIC^n \ge n \cdot CIC^1$

We will show the following two results.

- 1. $I(X, Y; \pi | Z) \ge \sum_{i=1}^{n} I(X_i, Y_i; \pi | Z)$
- 2. $I(X_i, Y_i; \pi | Z) \ge CIC_{\eta, \varepsilon}(Disj^1)$

 $\mathbf{Proof} \quad (\mathrm{of} \ 1):$

$$\begin{split} I(X,Y;\pi|Z) &= H(X,Y|Z) - H(X,Y|\pi,Z) \\ H(X,Y|Z) &= \sum_{i=1}^{n} H(X_{i},Y_{i}|Z,X_{1},Y_{1},\ldots,X_{i-1},Y_{i-1}) \\ &= \sum_{i=1}^{n} H(X_{i},Y_{i}|Z) \\ H(X,Y|\pi,Z) &= \sum_{i=1}^{n} H(X_{i},Y_{i}|\pi,Z,X_{1},Y_{1},\ldots,X_{i-1},Y_{i-1}) \\ I(X_{i},Y_{i};\pi|Z) &= H(X_{i},Y_{i}|Z) - H(X_{i},Y_{i}|\pi,Z) \end{split}$$

Since $H(X_i, Y_i | \pi, Z) \ge H(X_i, Y_i | \pi, Z, X_1, Y_1, \dots, X_{i-1}, Y_{i-1})$, we see that $I(X, Y; \pi | Z) \ge \sum_{i=1}^n I(X_i, Y_i; \pi | Z)$ as desired.