1 Today's Topic

- Direct Sum Problem
- Internal Information Cost

2 Direct Sum Problem

For any two party computation problem $f:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}$, consider its direct sum problem

$$
f^{\otimes n}\left(\{0,1\}^{\ell} \times\{0,1\}^{\ell}\right)^{n} \rightarrow\{0,1\}^{n}
$$

Such that

$$
f^{\otimes n}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=\left(f\left(x_{1}, y_{1}\right), \ldots, f\left(x_{n}, y_{n}\right)\right)
$$

It's obvious that $\mathcal{C C}\left(f^{\otimes n}\right) \leq n \cdot \mathcal{C C}(f)$. It might seem that there are no better way to compute $f^{\otimes n}$ than compute each coordinate individually.

While there exists function f such that $\mathcal{C C}\left(f^{\otimes n}\right) \ll n \cdot \mathcal{C C}(f)$.

Aside: Computational Complexity

There exists function a f such that $T(f) \geq \ell^{2} / \log \ell$, while $T\left(f^{\otimes n}\right) \ll n \cdot T(f)$ for some n. $T(f)$ is the computional complexity of f, measured by time or circuit size.
For $x \in\{0,1\}^{\ell}$, let $f(x)=A_{\ell} x$. $\left\{A_{\ell}\right\}_{\ell=1}^{\infty}$ is a family of matrix. There exists a family of matrix such that $f(x)$ needs $\Omega\left(\ell^{2} / \log \ell\right)$ size circuits to compute. While its direct product $f^{\otimes n}$ can be speeded up by matrix multiplication.

Theorem 1 ([BBCR10]). Informal, for all $f, \mu, \mathcal{C C}_{\mu^{n}}\left(f^{\otimes n}\right) \succsim \mathcal{C C}_{\mu}(f) \cdot \sqrt{n}$
More precisely, we also need to consider the error probability.

$$
\mathcal{C C}_{\mu^{n}, \varepsilon}\left(f^{\otimes n}\right) \geq \tilde{\Omega}\left(\mathcal{C C}_{\mu, \varepsilon}(f) \cdot \sqrt{n}\right)
$$

Notice that the error probability preserves. Compare it with the naïve upper bound

$$
\mathcal{C C}_{\mu^{n}, \varepsilon^{\prime}}\left(f^{\otimes n}\right) \leq n \cdot \mathcal{C C}_{\mu, \varepsilon}(f)
$$

where $1-\varepsilon^{\prime}=(1-\varepsilon)^{n}$.
Later work study the asymptotic behavior of the amortized communication, showing that the communication complexity to compute $f^{\otimes n}$ grows linearly.
Theorem 2 ([BR11]). For all f, μ, ε,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathcal{C C}_{\mu^{n}, \varepsilon}\left(f^{\otimes n}\right)=\mathcal{I C}_{\mu, \varepsilon}^{\mathrm{int}}(f)
$$

Moreover, in [BBCR10], they prove a stronger result for some functions. Let $f^{+n}:\left(\{0,1\}^{\ell} \times\{0,1\}^{\ell}\right)^{n} \rightarrow$ $\{0,1\}^{n}$ denotes the parity of n outputs, or more generally, the sum of n outputs modulo K.

$$
f^{+n}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=\sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) .
$$

f^{+n} output much less information then $f^{\otimes n}$, one might expect f^{+n} would be much easier to compute. While there exists function f (and distribution μ) such that $\mathcal{C C}_{\mu^{n}}\left(f^{+n}\right) \succsim \mathcal{C} \mathcal{C}_{\mu}(f) \cdot \sqrt{n}$.

3 Internal Information Cost

We use the same notations as previous lectures. The two-party computation scheme is $\Pi=\Pi\left(X, Y, R, R_{A}, R_{B}\right)$. Use capital letter to denote random variables. X is Alice's private input; Y is Bob's private input; R is common randomness; $R_{A}\left(R_{B}\right)$ is the private randomness of Alice (Bob).

In previous lectures, we've discussed external information cost $\mathcal{I} \mathcal{C}^{\text {ext }}(\Pi)=I(X Y ; \Pi \mid R)$, what can an external party learn from the transcript.

In this lecture, we consider internal information cost, $\mathcal{I C}^{\text {int }}(\Pi)=I(X ; \Pi \mid Y R)+I(Y ; \Pi \mid X R)$, what each party can learn about each other's input by reading the transcript.

Definition 1 (internal information cost). $\mathcal{I C}^{\text {int }}(\Pi)=I(X ; \Pi \mid Y R)+I(Y ; \Pi \mid X R)$.
A natural definition of internal information cost should be $\mathcal{I C}{ }^{\text {int }}(\Pi)=I\left(X ; \Pi \mid Y R R_{B}\right)+I\left(Y ; \Pi \mid X R R_{A}\right)$. Notice that $I(X ; \Pi \mid Y R)=I\left(X ; \Pi \mid Y R R_{B}\right)$, this justifies our definition.

Claim. $\mathcal{I C}^{\text {int }}(\Pi) \leq \mathcal{I C}{ }^{\text {ext }}(\Pi) \leq \mathcal{C C}(\Pi)$
Proof. Let Π is a k-bit transcript, then

$$
\begin{aligned}
I(X ; \Pi \mid Y R) & =\sum_{i=1}^{k} I\left(\Pi_{i} ; X \mid Y, R, \Pi_{1} \ldots \Pi_{i-1}\right) \\
I(Y ; \Pi \mid X R) & =\sum_{i=1}^{k} I\left(\Pi_{i} ; Y \mid X, R, \Pi_{1} \ldots \Pi_{i-1}\right) \\
I(X, Y ; \Pi \mid R) & =\sum_{i=1}^{k} I\left(\Pi_{i} ; X, Y \mid R, \Pi_{1} \ldots \Pi_{i-1}\right)
\end{aligned}
$$

Let $Z_{1}, \ldots, Z_{k} \in\{a, b\}$ be random variables, Z_{i} is the party who send the i-th bit. By the constraint of two-party computation, Z_{i} is determined by $R, \Pi_{1} \ldots \Pi_{i-1}$. Conditional on a assignment of $R=r, \Pi_{1} \ldots \Pi_{i-1}=\pi_{1} \ldots \pi_{i-1}$, w.o.l.g. assume $Z_{i}=b$ (Bob would send the i-th bit), then Bob learn nothing from the next bit as it's generated by him. Based on this intuition, it's easy to prove that $I\left(\Pi_{i} ; X \mid Y, R, \Pi_{1} \ldots \Pi_{i-1}, Z_{i}=b\right)=0$.

$$
\begin{aligned}
& I\left(\Pi_{i} ; X, Y \mid R, \Pi_{1} \ldots \Pi_{i-1}, Z_{i}=b\right) \\
= & I\left(\Pi_{i} ; X \mid R, \Pi_{1} \ldots \Pi_{i-1}, Z_{i}=b\right)+I\left(\Pi_{i} ; Y \mid X, R, \Pi_{1} \ldots \Pi_{i-1}, Z_{i}=b\right) \\
\geq & \underbrace{I\left(\Pi_{i} ; X \mid Y, R, \Pi_{1} \ldots \Pi_{i-1}, Z_{i}=b\right)}_{=0}+I\left(\Pi_{i} ; Y \mid X, R, \Pi_{1} \ldots \Pi_{i-1}, Z_{i}=b\right)
\end{aligned}
$$

Similar inequality holds when conditional on $Z_{i}=a$. Then

$$
\begin{aligned}
& I\left(\Pi_{i} ; X, Y \mid R, \Pi_{1} \ldots \Pi_{i-1}\right) \\
= & \sum_{z \in\{a, b\}} \operatorname{Pr}\left[Z_{i}=z\right] I\left(\Pi_{i} ; X, Y \mid R, \Pi_{1} \ldots \Pi_{i-1}, Z_{i}=b\right) \\
\geq & \sum_{z \in\{a, b\}} \operatorname{Pr}\left[Z_{i}=z\right]\left(I\left(\Pi_{i} ; X \mid Y, R, \Pi_{1} \ldots \Pi_{i-1}, Z_{i}=z\right)+I\left(\Pi_{i} ; Y \mid X, R, \Pi_{1} \ldots \Pi_{i-1}, Z_{i}=z\right)\right) \\
= & I\left(\Pi_{i} ; Y \mid X, R, \Pi_{1} \ldots \Pi_{i-1}\right)+I\left(\Pi_{i} ; X, Y \mid R, \Pi_{1} \ldots \Pi_{i-1}\right)
\end{aligned}
$$

Take the sum of both sides of the inequality for $i=1, \ldots, n$ finish the proof.

4 Direct Sum Problem (Continued)

Informally, the following lemma shows that the (internal) information cost of direct sum $f^{\otimes n}$ is n times that of f.
Lemma 3. If you have protocol for $f^{\otimes n}$ with information $\operatorname{cost} \mathcal{I}$ and communication \mathcal{C}. Then you can get protocol for f with communication \mathcal{C} and information cost $\leq \mathcal{I} / n$.

The following lemma shows that if there is a long protocol has low information cost, it can be compressed.
Lemma 4. If you have protocol for f with communication $\tilde{\mathcal{C}}$ and information cost $\tilde{\mathcal{I}}$. Then there exists a protocol for f with communication $O(\sqrt{\tilde{\mathcal{I}} \tilde{\mathcal{C}}} \log \tilde{\mathcal{C}})$.

Suppose $\mathcal{C C}\left(f^{\otimes n}\right)=k$. Then Lemma 3 shows that there exists protocol Π^{\prime} computing f such that $\mathcal{C C}(\Pi) \leq k$ and $\mathcal{I C}(\Pi) \leq \frac{k}{n}$. Then apply Lemma $4, \mathcal{C C}(f) \leq \frac{k}{\sqrt{n}} \cdot \sqrt{\log k}$.
Proof of Lemma 3. Alice and Bob are given input x, y sampled from μ. They know a protocol Π that compute $f^{\otimes n}$. They want to use protocol the same protocol to solve the problem $f(x, y)$.

1. Pick a random location $j \in\{1, \ldots, n\}$.
2. Construct input pair $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$ such that $\left(x_{j}, y_{j}\right)=(x, y)$.

For $i<j, x_{i}$ is sampled from μ_{X} using public randomness, and y_{i} is sampled from $\mu_{Y \mid X=x_{i}}$ using Bob's private coins.
For $i>j, y_{i}$ is sampled from μ_{Y} using public randomness, and x_{i} is sampled from $\mu_{X \mid Y=y_{i}}$ using Alice's private coins.
3. Run the protocol $f^{\otimes n}$ and use the j-th bit of the output.

Denote above protocol by Π^{\prime}. The communication complexity of Π^{\prime} is the same as Π. The first term of the internal information cost of Π^{\prime} is

$$
\underset{j}{\mathbb{E}}\left[I\left(X_{j} ; \Pi \mid Y_{j}, R, j, X_{1}, \ldots X_{j-1}, Y_{j+1} \ldots Y_{n}\right)\right]
$$

We claim that it's no more than (in fact, equals to)

$$
\begin{aligned}
& \frac{1}{n} \underbrace{I\left(X_{1}, \ldots, X_{n} ; \Pi \mid Y_{1} \ldots Y_{n}, R\right)}_{\text {first term of } \mathcal{I} \mathcal{C}^{\mathrm{int}}(\Pi)} . \\
& \underset{j}{\mathbb{E}}\left[I\left(X_{j} ; \Pi \mid Y_{j}, R, j, X_{1}, \ldots X_{j-1}, Y_{j+1} \ldots Y_{n}\right)\right] \\
= & \frac{1}{n} \sum_{j=1}^{n} I\left(X_{j} ; \Pi \mid X_{1} \ldots X_{j-1}, Y_{1} \ldots Y_{n}, R\right) \\
= & \frac{1}{n} I\left(X_{1}, \ldots, X_{n} ; \Pi \mid Y_{1} \ldots Y_{n}, R\right)
\end{aligned}
$$

Similar equality holds for the second term of the internal information cost of Π^{\prime}, Π. Thus

$$
\mathcal{I C}^{\text {int }}\left(\Pi^{\prime}\right)=\frac{1}{n} \mathcal{I C}^{\text {int }}(\Pi)
$$

References

[BBCR10] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive communication. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 67-76. ACM, 2010.
[BR11] Mark Braverman and Anup Rao. Information equals amortized communication. CoRR, abs/1106.3595, 2011.

