1 Today’s Topic

- Direct Sum Problem
- Internal Information Cost

2 Direct Sum Problem

For any two party computation problem \(f: \{0, 1\}^\ell \times \{0, 1\}^\ell \rightarrow \{0, 1\} \), consider its direct sum problem

\[f^{\otimes n}(\{0, 1\}^{\ell} \times \{0, 1\}^{\ell})^n \rightarrow \{0, 1\}^n \]

Such that

\[f^{\otimes n}(x_1, y_1, \ldots, x_n, y_n) = (f(x_1, y_1), \ldots, f(x_n, y_n)) \]

It’s obvious that \(\mathsf{CC}(f^{\otimes n}) \leq n \cdot \mathsf{CC}(f) \). It might seem that there are no better way to compute \(f^{\otimes n} \) than compute each coordinate individually.

While there exists function \(f \) such that \(\mathsf{CC}(f^{\otimes n}) \ll n \cdot \mathsf{CC}(f) \).

Aside: Computational Complexity

There exists function \(f \) such that \(T(f) \geq \frac{\ell^2}{\log \ell} \), while \(T(f^{\otimes n}) \ll n \cdot T(f) \) for some \(n \). \(T(f) \) is the computational complexity of \(f \), measured by time or circuit size.

For \(x \in \{0, 1\}^\ell \), let \(f(x) = A^x \). \(\{A^\ell\}_{\ell=1}^\infty \) is a family of matrix. There exists a family of matrix such that \(f(x) \) needs \(\Omega(\ell^2/\log \ell) \) size circuits to compute. While its direct product \(f^{\otimes n} \) can be speeded up by matrix multiplication.

Theorem 1 ([BBCR10]). Informal, for all \(f, \mu \), \(\mathsf{CC}_{\mu}^n(f^{\otimes n}) \gtrapprox \mathsf{CC}_{\mu}(f) \cdot \sqrt{n} \)

More precisely, we also need to consider the error probability.

\[\mathsf{CC}_{\mu, \varepsilon}^n(f^{\otimes n}) \gtrapprox \Omega(\mathsf{CC}_{\mu, \varepsilon}(f) \cdot \sqrt{n}) \]

Notice that the error probability preserves. Compare it with the naive upper bound

\[\mathsf{CC}_{\mu, \varepsilon}^n(f^{\otimes n}) \leq n \cdot \mathsf{CC}_{\mu, \varepsilon}(f) \]

where \(1 - \varepsilon' = (1 - \varepsilon)^n \).

Later work study the asymptotic behavior of the amortized communication, showing that the communication complexity to compute \(f^{\otimes n} \) grows linearly.

Theorem 2 ([BR11]). For all \(f, \mu, \varepsilon \),

\[\lim_{n \rightarrow \infty} \frac{1}{n} \mathsf{CC}_{\mu, \varepsilon}^n(f^{\otimes n}) = \mathcal{I}_{\mu, \varepsilon}(f) \]

Moreover, in [BBCR10], they prove a stronger result for some functions. Let \(f^{+n}: (\{0, 1\}^\ell \times \{0, 1\}^\ell)^n \rightarrow \{0, 1\}^n \) denotes the parity of \(n \) outputs, or more generally, the sum of \(n \) outputs modulo \(K \).

\[f^{+n}(x_1, y_1, \ldots, x_n, y_n) = \sum_{i=1}^n f(x_i, y_i) \]

\(f^{+n} \) output much less information then \(f^{\otimes n} \), one might expect \(f^{+n} \) would be much easier to compute. While there exists function \(f \) (and distribution \(\mu \)) such that \(\mathsf{CC}_{\mu}^n(f^{+n}) \gtrapprox \mathsf{CC}_{\mu}(f) \cdot \sqrt{n} \).
3 Internal Information Cost

We use the same notations as previous lectures. The two-party computation scheme is \(\Pi = \Pi(X, Y, R, R_A, R_B) \). Use capital letter to denote random variables. \(X \) is Alice’s private input; \(Y \) is Bob’s private input; \(R \) is common randomness; \(R_A \) (\(R_B \)) is the private randomness of Alice (Bob).

In previous lectures, we’ve discussed external information cost \(\mathcal{IC}^\text{return}(\Pi) = I(XY; \Pi|R) \), what can an external party learn from the transcript.

In this lecture, we consider internal information cost, \(\mathcal{IC}^\text{int}(\Pi) = I(X; \Pi|R) + I(Y; \Pi|X) \), what each party can learn about each other’s input by reading the transcript.

Definition 1 (internal information cost). \(\mathcal{IC}^\text{int}(\Pi) = I(X; \Pi|Y) + I(Y; \Pi|X) \).

A natural definition of internal information cost should be \(\mathcal{IC}^\text{int}(\Pi) = I(X; \Pi|YRR_B) + I(Y; \Pi|XRR_A) \). Notice that \(I(X; \Pi|Y) = I(X; \Pi|YRR_B) \), this justifies our definition.

Claim. \(\mathcal{IC}^\text{int}(\Pi) \leq \mathcal{IC}^\text{return}(\Pi) \leq \mathcal{CC}(\Pi) \)

Proof. Let \(\Pi \) is a \(k \)-bit transcript, then

\[
I(X; \Pi|Y) = \sum_{i=1}^{k} I(\Pi_i; X|Y, \Pi_1 \ldots \Pi_{i-1})
\]

\[
I(Y; \Pi|X) = \sum_{i=1}^{k} I(\Pi_i; Y|X, \Pi_1 \ldots \Pi_{i-1})
\]

\[
I(X, Y; \Pi|R) = \sum_{i=1}^{k} I(\Pi_i; X, Y|R, \Pi_1 \ldots \Pi_{i-1})
\]

Let \(Z_1, \ldots, Z_k \in \{a, b\} \) be random variables, \(Z_i \) is the party who send the \(i \)-th bit. By the constraint of two-party computation, \(Z_i \) is determined by \(R, \Pi_1 \ldots \Pi_{i-1} \). Conditional on a assignment of \(R = r, \Pi_1 \ldots \Pi_{i-1} = \pi_1 \ldots \pi_{i-1} \), w.o.l.g. assume \(Z_i = b \) (Bob would send the \(i \)-th bit), then Bob learn nothing from the next bit as it’s generated by him. Based on this intuition, it’s easy to prove that \(I(\Pi_i; X|Y, R, \Pi_1 \ldots \Pi_{i-1}, Z_i = b) = 0 \).

\[
I(\Pi_i; X, Y|R, \Pi_1 \ldots \Pi_{i-1}, Z_i = b) = I(\Pi_i; X|Y, \Pi_1 \ldots \Pi_{i-1}, Z_i = b) + I(\Pi_i; Y|X, R, \Pi_1 \ldots \Pi_{i-1}, Z_i = b)
\]

\[
\geq I(\Pi_i; X|Y, R, \Pi_1 \ldots \Pi_{i-1}, Z_i = b) + I(\Pi_i; Y|X, R, \Pi_1 \ldots \Pi_{i-1}, Z_i = b)
\]

\[
= 0
\]
Similar inequality holds when conditional on $Z_i = a$. Then
\[
I(\Pi_i; X, Y | R, \Pi_1 \ldots \Pi_{i-1}) \\
= \sum_{z \in \{a, b\}} \Pr[Z_i = z | I(\Pi_i; X, Y | R, \Pi_1 \ldots \Pi_{i-1}, Z_i = b) \\
\geq \sum_{z \in \{a, b\}} \Pr[Z_i = z \left(I(\Pi_i; X | R, \Pi_1 \ldots \Pi_{i-1}, Z_i = z) + I(\Pi_i; Y | R, \Pi_1 \ldots \Pi_{i-1}, Z_i = z) \right) \\
= I(\Pi_i; Y | R, \Pi_1 \ldots \Pi_{i-1}) + I(\Pi_i; X | R, \Pi_1 \ldots \Pi_{i-1})
\]
Take the sum of both sides of the inequality for $i = 1, \ldots, n$ finish the proof.

4 Direct Sum Problem (Continued)

Informally, the following lemma shows that the (internal) information cost of direct sum $f^{\otimes n}$ is n times that of f.

Lemma 3. If you have protocol for $f^{\otimes n}$ with information cost \mathcal{I} and communication \mathcal{C}. Then you can get protocol for f with communication \mathcal{C} and information cost $\leq \mathcal{I}/n$.

The following lemma shows that if there is a long protocol has low information cost, it can be compressed.

Lemma 4. If you have protocol for f with communication $\tilde{\mathcal{C}}$ and information cost $\tilde{\mathcal{I}}$. Then there exists a protocol for f with communication $O(\sqrt{\tilde{\mathcal{I}} \log \tilde{\mathcal{C}}})$.

Suppose $\mathcal{CC}(f^{\otimes n}) = k$. Then Lemma 3 shows that there exists protocol Π' computing f such that $\mathcal{CC}(\Pi) \leq k$ and $\mathcal{IC}(\Pi) \leq \frac{k}{n}$. Then apply Lemma 4, $\mathcal{CC}(f) \leq \frac{k}{\sqrt{n}} \cdot \sqrt{\log k}$.

Proof of Lemma 3. Alice and Bob are given input x, y sampled from μ. They know a protocol Π that compute $f^{\otimes n}$. They want to use protocol the same protocol to solve the problem $f(x, y)$.

1. Pick a random location $j \in \{1, \ldots, n\}$.
2. Construct input pair $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ such that $(x_j, y_j) = (x, y)$.
 - For $i < j$, x_i is sampled from μ_X using public randomness, and y_i is sampled from $\mu_{Y|X=x_i}$ using Bob’s private coins.
 - For $i > j$, y_i is sampled from μ_Y using public randomness, and x_i is sampled from $\mu_{X|Y=y_i}$ using Alice’s private coins.
3. Run the protocol $f^{\otimes n}$ and use the j-th bit of the output.

Denote above protocol by Π'. The communication complexity of Π' is the same as Π. The first term of the internal information cost of Π' is
\[
\mathbb{E}_j\left[I(X_j; \Pi|Y_j, R, j, X_1, \ldots X_{j-1}, Y_{j+1} \ldots Y_n)\right]
\]
We claim that it’s no more than (in fact, equals to)
\[
\frac{1}{n} \mathcal{IC}^{\otimes n}(\Pi) \cdot \mathcal{IC}(\Pi)
\]
\[
= \frac{1}{n} \mathbb{E}_j\left[I(X_j; \Pi|Y_j, R, j, X_1, \ldots X_{j-1}, Y_{j+1} \ldots Y_n)\right]
\]
\[
= \frac{1}{n} \sum_{j=1}^n I(X_j; \Pi|X_1 \ldots X_{j-1}, Y_1 \ldots Y_n, R)
\]
\[
= \frac{1}{n} I(X_1, \ldots, X_n; \Pi|Y_1 \ldots Y_n, R)
\]

12-3
Similar equality holds for the second term of the internal information cost of \(\Pi', \Pi \). Thus

\[
\mathcal{IC}^{\text{int}}(\Pi') = \frac{1}{n} \mathcal{IC}^{\text{int}}(\Pi) \quad \square
\]

References
