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1 Today’s Topic

• Direct Sum Problem

• Internal Information Cost

2 Direct Sum Problem

For any two party computation problem f : {0, 1}` × {0, 1}` → {0, 1}, consider its direct sum problem

f⊗n({0, 1}` × {0, 1}`)n → {0, 1}n

Such that
f⊗n(x1, y1, . . . , xn, yn) = (f(x1, y1), . . . , f(xn, yn))

It’s obvious that CC(f⊗n) ≤ n · CC(f). It might seem that there are no better way to compute f⊗n than
compute each coordinate individually.

While there exists function f such that CC(f⊗n)� n · CC(f).

Aside: Computational Complexity

There exists function a f such that T (f) ≥ `2/ log `, while T (f⊗n)� n ·T (f) for some
n. T (f) is the computional complexity of f , measured by time or circuit size.

For x ∈ {0, 1}`, let f(x) = A`x. {A`}∞`=1 is a family of matrix. There exists a family
of matrix such that f(x) needs Ω(`2/ log `) size circuits to compute. While its direct
product f⊗n can be speeded up by matrix multiplication.

Theorem 1 ([BBCR10]). Informal, for all f, µ, CCµn(f⊗n) v CCµ(f) ·
√
n

More precisely, we also need to consider the error probability.

CCµn,ε(f
⊗n) ≥ Ω̃(CCµ,ε(f) ·

√
n).

Notice that the error probability preserves. Compare it with the näıve upper bound

CCµn,ε′(f
⊗n) ≤ n · CCµ,ε(f)

where 1− ε′ = (1− ε)n.
Later work study the asymptotic behavior of the amortized communication, showing that the communi-

cation complexity to compute f⊗n grows linearly.

Theorem 2 ([BR11]). For all f, µ, ε,

lim
n→∞

1

n
CCµn,ε(f

⊗n) = ICint
µ,ε(f)

Moreover, in [BBCR10], they prove a stronger result for some functions. Let f+n : ({0, 1}`×{0, 1}`)n →
{0, 1}n denotes the parity of n outputs, or more generally, the sum of n outputs modulo K.

f+n(x1, y1, . . . , xn, yn) =

n∑
i=1

f(xi, yi).

f+n output much less information then f⊗n, one might expect f+n would be much easier to compute. While
there exists function f (and distribution µ) such that CCµn(f+n) v CCµ(f) ·

√
n.
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3 Internal Information Cost

We use the same notations as previous lectures. The two-party computation scheme is Π = Π(X,Y,R,RA, RB).
Use capital letter to denote random variables. X is Alice’s private input; Y is Bob’s private input; R is
common randomness; RA (RB) is the private randomness of Alice (Bob).

(x, y)← µ

RX Y

Alice BobRA RB

In previous lectures, we’ve discussed external information cost ICext(Π) = I(XY ; Π|R), what can an
external party learn from the transcript.

In this lecture, we consider internal information cost, ICint(Π) = I(X; Π|Y R) + I(Y ; Π|XR), what each
party can learn about each other’s input by reading the transcript.

Definition 1 (internal information cost). ICint(Π) = I(X; Π|Y R) + I(Y ; Π|XR).

A natural definition of internal information cost should be ICint(Π) = I(X; Π|Y RRB) + I(Y ; Π|XRRA).
Notice that I(X; Π|Y R) = I(X; Π|Y RRB), this justifies our definition.

Claim. ICint(Π) ≤ ICext(Π) ≤ CC(Π)

Proof. Let Π is a k-bit transcript, then

I(X; Π|Y R) =

k∑
i=1

I(Πi;X|Y,R,Π1 . . .Πi−1)

I(Y ; Π|XR) =

k∑
i=1

I(Πi;Y |X,R,Π1 . . .Πi−1)

I(X,Y ; Π|R) =

k∑
i=1

I(Πi;X,Y |R,Π1 . . .Πi−1)

Let Z1, . . . , Zk ∈ {a, b} be random variables, Zi is the party who send the i-th bit. By the con-
straint of two-party computation, Zi is determined by R,Π1 . . .Πi−1. Conditional on a assignment of
R = r,Π1 . . .Πi−1 = π1 . . . πi−1, w.o.l.g. assume Zi = b (Bob would send the i-th bit), then Bob learn
nothing from the next bit as it’s generated by him. Based on this intuition, it’s easy to prove that
I(Πi;X|Y,R,Π1 . . .Πi−1, Zi = b) = 0.

I(Πi;X,Y |R,Π1 . . .Πi−1, Zi = b)

= I(Πi;X|R,Π1 . . .Πi−1, Zi = b) + I(Πi;Y |X,R,Π1 . . .Πi−1, Zi = b)

≥ I(Πi;X|Y,R,Π1 . . .Πi−1, Zi = b)︸ ︷︷ ︸
=0

+I(Πi;Y |X,R,Π1 . . .Πi−1, Zi = b)

12-2



Similar inequality holds when conditional on Zi = a. Then

I(Πi;X,Y |R,Π1 . . .Πi−1)

=
∑

z∈{a,b}

Pr[Zi = z]I(Πi;X,Y |R,Π1 . . .Πi−1, Zi = b)

≥
∑

z∈{a,b}

Pr[Zi = z]
(
I(Πi;X|Y,R,Π1 . . .Πi−1, Zi = z) + I(Πi;Y |X,R,Π1 . . .Πi−1, Zi = z)

)
= I(Πi;Y |X,R,Π1 . . .Πi−1) + I(Πi;X,Y |R,Π1 . . .Πi−1)

Take the sum of both sides of the inequality for i = 1, . . . , n finish the proof.

4 Direct Sum Problem (Continued)

Informally, the following lemma shows that the (internal) information cost of direct sum f⊗n is n times that
of f .

Lemma 3. If you have protocol for f⊗n with information cost I and communication C. Then you can get
protocol for f with communication C and information cost ≤ I/n.

The following lemma shows that if there is a long protocol has low information cost, it can be compressed.

Lemma 4. If you have protocol for f with communication C̃ and information cost Ĩ. Then there exists a

protocol for f with communication O(
√
ĨC̃ log C̃).

Suppose CC(f⊗n) = k. Then Lemma 3 shows that there exists protocol Π′ computing f such that
CC(Π) ≤ k and IC(Π) ≤ k

n . Then apply Lemma 4, CC(f) ≤ k√
n
·
√

log k.

Proof of Lemma 3. Alice and Bob are given input x, y sampled from µ. They know a protocol Π that
compute f⊗n. They want to use protocol the same protocol to solve the problem f(x, y).

1. Pick a random location j ∈ {1, . . . , n}.

2. Construct input pair (x1, . . . , xn), (y1, . . . , yn) such that (xj , yj) = (x, y).
For i < j, xi is sampled from µX using public randomness, and yi is sampled from µY |X=xi

using
Bob’s private coins.
For i > j, yi is sampled from µY using public randomness, and xi is sampled from µX|Y=yi using
Alice’s private coins.

3. Run the protocol f⊗n and use the j-th bit of the output.

Denote above protocol by Π′. The communication complexity of Π′ is the same as Π. The first term of
the internal information cost of Π′ is

E
j

[
I(Xj ; Π|Yj , R, j,X1, . . . Xj−1, Yj+1 . . . Yn)

]
We claim that it’s no more than (in fact, equals to)

1

n
I(X1, . . . , Xn; Π|Y1 . . . Yn, R)︸ ︷︷ ︸

first term of ICint(Π)

.

E
j

[
I(Xj ; Π|Yj , R, j,X1, . . . Xj−1, Yj+1 . . . Yn)

]
=

1

n

n∑
j=1

I(Xj ; Π|X1 . . . Xj−1, Y1 . . . Yn, R)

=
1

n
I(X1, . . . , Xn; Π|Y1 . . . Yn, R)
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Similar equality holds for the second term of the internal information cost of Π′,Π. Thus

ICint(Π′) =
1

n
ICint(Π)
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