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1 Goal of Today’s Class

We will show that Information = Amortized Comumication Complexity.
That is, let f(x, y) be a function, µ be a distribution on the the inputs to f , and ρ be the error probability.

We define the Amortized Communication Complexity of f to be lim
n→∞

1

n
CC(f⊗n). The goal is to show the

following.

Theorem 1 lim
n→∞

1

n
CC(f⊗n) = ICi(f).

We will denote ICi(f) = IC(f) since there is no external information cost here.

We showed in the previous lecture that IC(f) ≤ 1

n
CC(f⊗n) ≤ CC(f). This result tells us that the first

inequality becomes an equality, as n→∞.

The direct sum problem is the problem of determining the relationship between lim
n→∞

1

n
CC(f⊗n) and

CC(f). Our result here reduces this problem to the one of determining the relationship between IC(f) and
CC(f).

2 Sampling Protocol

We prove this theorem by introducing a protocol that satisfies the following properties. Suppose player A is
given a distribution P and player B is given a distribution Q. We claim there exists a protocol such that at
the end,

1. A outputs x drawn from P .

2. B outputs y s.t. for all x, P (y = x|x) > 1− ε.

3. Expected Communication = D(P ‖ Q) + 5
√
D(P ‖ Q) +O(log

1

ε
+ 1).

The protocol works as follows. Suppose the distributions P and Q are given over a universe U . The
shared random tape can be interpreted as a sequence of (xi, pi) ∈ U × [0, 1]. We use this random tape to
also get hash functions hi : U → [0, 1] so that P (hi(x) = hi(y)) = 1/2 for all x 6= y, i. The following are the
steps of the protocol.

1. A picks a point (x, p) which is the first point in the public randomness lying below P ; let i be the index
of this point.

2. A sends k = d i

|U |
e to B using 1 + dlog log 1

ε e bits. If k is too large i.e. A needs to use more bits to

send k, then abort.

3. Start with t = 0. At the tth iteration, the following occurs.

(a) A sends hj(xi) up to j ≤ S(t) = (t+ 1)2 + log 1
ε + 1.

(b) B finds if there exists r such that (xr, pr) ∈ CtQ (where Ct = 2t
2

) and also hj(xr) = h)j(xi)∀j ≤
S(t). If r exists, output xr. Otherwise, t increments by 1 and B outputs failure.
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We claim this protocol satisfies the desired properties. First, we bound the total communication. Note
that step 3 terminates when t2 ≥ logP (xi)/Q(xi). Let T = d

√
logP (xi)/Q(xi)e. Then by the T th iteration,

A will have sent at most S(T ) bits and B at most T + 1 bits, so the total communication in step 3 is at most
S(T ) + T + 1. Taking expectation gives the desired bound on the expected communication.

Next we analyze the error probability. We note that disagreement occurs if there exists r 6= i such that

(xr, pr) ∈ CtQ and hj(xr) = hj(xi) for all j ≤ S(t). This happens with probability
Ct
|U |

2−S(t) for a particular

r. Taking the union bound among all r, we see the total error probability is less than ε2−t.

3 Correlated Pointer Jumping

We define a related problem called Correlated Pointer Jumping as follows. The input is a rooted tree where
each non-leaf node is owned by A or B, each non-leaf node owned by a particular player has a set of children
owned by the other, corresponding to each node v there are two distributions, TAv of children known to A
and TBv of children known to B. We have a distribution on the tree obtained by sampling each child of the
node according to the distribution given by the owner of the parent node. The goal is to sample the leaves
of the tree according to this distribution.

Now given a public protocol π with inputs X,Y and randomness R, fixing the inputs x, y and randomness
r, we get an instance of correlated pointer jumping as follows. The tree is the corresponding protocol tree,
and the distributions TAv and TBv are defined as follows. Suppose v is a node of depth i and is owned by A. Let
Tv be the random variable corresponding to which child of v is chosen; then TAv = Tv|X = x, π<i(X,Y ) = rv
and TAv = Tv|Y = y, π<i(X,Y ) = rv.

Let k be the depth of the protocol tree. We can use the method in the previous section to solve this
problem by repeatedly running the previous protocol.

If the path sampled is T = (v0, v1, ..., vk), then we have that the communication is

k∑
i=0

D(PTA
vi
‖ PTB

vi
) + 5

√
D(PTA

vi
‖ PTB

vi
) +O(log

1

ε
+ 1)

=

k∑
i=0

(I(TAvi |T
B
vi ) + I(TBvi |T

A
vi )) + 5

√
I(TAvi |TBvi ) + I(TBvi |TAvi ) +O(log

1

ε
+ 1)

≤ IC(T ) + 5
√
kIC(T ) + kO(log

1

ε
+ 1)

where the last inequality is by Cauchy-Schwartz.

4 Proof of Theorem 1

It suffices to show that for any δ > 0, for sufficiently large n we have CC(f⊗n) < IC(f) + δ/2. The idea
is to take a protocol π that computes f with error < α with respect to µ, for some α < ρ. Let πn be
the protocol that takes inputs in Xn, Y n and parallely runs them. We simulate πn as described in the
previous section with error (ρ−α)/2, and truncate after IC(πn) + 5

√
CC(π)IC(πn) +CC(π)O(log 1

ε + 1) =

nIC(π)+5
√
nCC(π)IC(π)+CC(π)O(log 1

ε +1) bits. For sufficiently large n, this communication is at most
n(IC(π) + (δ/2)), and it can be shown that the error is at most ρ. This shows CC(f⊗n) < IC(f) + δ/2 for
sufficiently large n, as desired. This completes the proof of Theorem 1.
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