CS 229r Information Theory in Computer Science Mar 22, 2016

Lecture 15
Lecturer: Madhu Sudan Scribe: Tiffany Wu

1 Introduction

Today, we’re going to talk about finding data structure problem lower bounds by reducing to communication
complexity problems, for which we already have methods for establishing lower bounds. This follows the
singular technique that Patrascu created for establishing lower bounds on a variety data structure problems
that previously had a lot of different, more complex proofs.

We will introduce the data structure problem, and examine and begin to prove the lower bound for
a particular one, called the Partial Match Retrieval problem (PMR). We show that any PMR problem
can be reduced to an instance of a communication problem called Lopsided Set Disjointness (LSD) and
Blocked-LSD, but won’t explicitly prove today the lower bound for LSD.

2 Data Structure Problem

2.1 Definitions

Definition 1. A data structure problem consists of a single function f over 2 binary string inputs we want

to compute:
F{0,13 > {0,1}™ — {0, 1}

The first input € {0,1}% is the query ¢ given to the function and the second input € {0,1}™ is the
database x that we are querying against. Often, we may write f(q,z). Here, we only consider boolean
functions, though one could imagine generalizing to more complex functions.

Here, we imagine that the database = consists of n d-bit strings (the same length as a query):
z € {0,1}™ = {{0,1}%}"

and often the question is of the form ”Is there an element in = that’s similar to our query in a particular
way?”

Example 1. Dictionary problem - asking if query string is in database.
e Data: x C {0,1}¢

e Query: q € {0,1}¢

1 ifgex
0 otherwise

fprer(q,x) = {

Definition 2. A solution to a data structure problem consists of a data structure D, a query strategy {Q;},
and a result function g that outputs the answer given the queries:

D:{0,1}™ — [w]®

Qi : {0,1}% x [w]'~! — [g]
g:{0,1}¢ x [w]’ — {0,1}

15-1

where YV, q,
f(qax) = g(qa a1, ...CLt)

where
a; = [D(w)]Q(q,al,-<~7ai—1)

That is, we transform the database z to a structure D(x) with s entries, each from an alphabet of [w].
We can think of @; as deterimining what entry of the database we would like to have returned, given our
query and all the previous responses aq, ag, ...,a;,—1 € [w] to previous queries. The result is then given after
t queries by a function g, which takes as input ¢, ai, ...a; and returns the correct answer, f(g,x).

This is also known in the literature as the cell probe model.

2.2 What makes a good solution?

We evaluate the solution based on the parameters (s,w,t). Ideally, we’d like for the size s of the data
structure to be as small as the input database (O(n)), t to be almost constant (O(1)), and w to be as small
as possible.

What we don’t care about in this model (but may be important for practical implementation purposes)
are questions about:

e dynamic questions - updating the data structure with new data between queries
e time involved in preprocessing
Analyzing possible data structures for the dictionary problem gives the following parameters:
e Sorted Array using binary search - w = |{0,1}%|, s = n, t = [logn]
e Trees - w = [{0,1}% x [s] x [s]|, s =n, t = [logn]
e Hash Table - w = [{0,1}°@)|, s = O(n),t = O(1)

One can see that the Hash Table is close to our ideal.

2.3 Holy Grail Problems

Can we find problems that have really large lower bounds? We want to find an explicit f (e.g. any
function in P) such that V data structure, where w = 2, we have either

e t = d“M - number of queries is superpolynomial in length of query
o s =m®W - size of data structure is huge

Can we find problems that have really small lower bounds? Every problem has two obvious
solutions.

e t =m,s =m - simply store z, and ask for entire database.

e s = 2%t =1 - preprocess this function for all inputs and store in database, so constant number of
queries.

The question is, is it possible to get s = m,t = O(1)? As it turns out, this is an open problem.
As for these holy grail problems with large lower bounds, we consider the Partial Match Retrieval Problem
as a potential candidate.

15-2

3 Partial Match Retrieval Problem (PMR)

Definition 3. Let strings p = pip2...pa and ¢ = q1,42,...qd, where p;,q; € {0,1}. We say p > q (“p
dominates q”) iff p; > qi, Vi.

Informally, PMR seeks to compute whether any element in the database provided dominates the query.
Formally,

x C {0,1}¢
qe{0,1}¢
frmr(g,) = {

1 ifdpex,p>q
0 otherwise

We want to prove the following theorem:

Theorem 4. For every data structure, if w < 2”17676 >0 and s > 2%/Y) That is, given that we cannot
query the entire database (but we can make rather large queries), the storage must be “large.”

To prove this claim, we note that if we can reduce the communication complexity problem to a data
structure problem, then a lower bound on communication complexity translates to a lower bound in our
data structure problem.

Here are two possible reductions:

1.

Communication protocol = Data structure:
Alice is given ¢ as input. Bob is given z as input. Together, they wish to compute f(z,q). There are
t rounds of communication, with this alternation:

e Alice tells Bob (assuming data structure size is small) what cell she wishes to see: log s bits.

e Bob tells Alice the contents of that cell: logw bits.

. Communication protocol for f(*) = Data structure:

This is a slightly different flavor of repeated calculation, distinct from direct sum. In this case, Bob
always has the same input.
Alice is given q1, g2, ...qx as input. Bob is given x. We want to compute

f(k)(Qh o Gy) = (f(q1, @), .., fqr,)

We can do this by allowing Alice and Bob to say more each round (querying in parallel), while still
communication through ¢ rounds:

e Alice tells Bob (assuming data structure size is small) what subsets of cell she wishes to see:
log () bits.
e Bob tells Alice the contents of those cells: klogw bits.

Here, note that Alice is able to save a little by specifying the subset, which becomes klog 7 bits of
communication per round, rather than klog s, as we might expect.

We’ll focus on reduction 1 in this course.

4

Reduce LSD to PMR

In order to establish a target communication problem to reduce from, let’s examine the Lopsided Set Dis-
jointness problem. LSD is similar to disjointness from before, but note that here Alice’s input is much smaller
than Bob’s. (i.e. d < n"(l)). Blocked-LSD is a variation on LSD has additional restrictions on Alice’s input.

15-3

Definition 5. Lopsided Set Disjointness (LSD)
Alice gets S C [N - B] where |S| = N.
Bob gets T C [N - B] (no restrictions on T).
Decide if SNT = ():
1 ifSNT#0
0 otherwise

f(SvT) :{

The trivial protocols where Alice or Bob sends over their entire inputs use N log B = log (AZIVB) and NB
bits, respectively.
Definition 6. Blocked LSD
Alice gets S C [N] x [B] such that Vi € [N], 's; s.t. (i,s;) € S.
Bob gets T C [N] x [B].
Decide if SNT = (.

The general strategy then becomes to reduce from LSD to Block-LSD with a reasonably small amount
of communication, and then reduce from Block-LSD to PMR. Then, LSD reduces to PMR, so lower bounds
on LSD tell us some things about lower bounds on PMR.

4.1 Reduction from LSD to Block LSD

Note that the difference between LSD and Blocked-LSD is that in the latter, Alice’s input is restricted to be
in the form of

S = ((17 51)7 (27 52)7 (Na SN))
. We can imagine that we have all possible N B pairs displayed in an matrix with B rows and N columns,
and both Alice and Bob have indicator matrices that displays which subsets they have as input.

To reduce from LSD and Blocked-LSD, we have Alice tell Bob how many points she has in each column
using O(N) bits of communication. Then both Alice and Bob will process their inputs. Bob duplicates each
of his columns according to how many times Alice reports that column. Alice then expands the columns from
left to right, deleting columns that don’t have a point in them, and expanding the ones that have multiple
into multiple columns with 1 point in each of them.

This costs O(N) bits, which ends up getting absorbed into the overall communication complexity of
Block-LSD.

4.2 Reduction from Block-LSD to PMR

Create an injective function ¢ : [B] — [(bl/’Q)] where [(b%)] represents the strings of length b with exactly b/2
zeroes. We can do so by choosing a fixed b large enough - as it turns out, b = O(log B). Note that

$(b) = ¢(c) == ¢(b) = ¢(c) == b=c
Alice gets input S = {(1,s1), (2, s2), ..., (N, sy)}. We construct a query of length Nb:
q = (¢(s1), ¢(s2), -0 (sn))
Bob gets input T of pairs. For every pair (i,t), we create a vector of length Nb:
T={.,(i,t),..} > x=1{., 1071 N9t 1
Here, the notation 10-1b¢(¢)1(N=9" denotes a vector with the first (i — 1)b bits set to 1, the next b bits

set to ¢(t), and the last (N —)b bits set to 1. That is, if we divide up the Nb vector into blocks of size b,
the ith block is set to ¢(¢), and the vector is 1 everywhere else.

15-4

Then we claim that PMR will only return 1 (i.e. there is an element in that dominates q) iff SNT # (.

Suppose that there exists a vector p € x that dominates ¢, both of length Nb. Since p is 1 everywhere
except for the ith b-block, where it is ¢(¢) for some ¢, then we have that p dominates ¢ iff p dominates ¢ in
the ith block (as it automatically dominates everywhere else). In the ith block, p has the form ¢(s;).

From before, if ¢(t) dominates ¢(s;), we must have that ¢ = s;. This is equivalent to saying that S and
T had some overlapping element (4,t). Thus, PMR returns 1 if S, 7T not disjoint. The converse is easy to see
as well.

5 Closing remarks

Note that in the above reduction, we have that n = |T'| = O(NB), and d = Nb = O(N log B).

We have a theorem that holds for LSD that we’ll use to prove Lemma 8 (not this lecture though!), both
of which we state now:

Theorem 7. In every protocol, either Alice sends QU(N log B) bits or Bob sends Q(NB'~¢) bits.
Lemma 8. FEither Alice sends Q(d) bits to Bob, or Bob sends Q(n'~¢) bits to Alice.

15-5

