1 Introduction

In this lecture we will cover Lovasz Local Lemma. We will give its definition and application, and give a constructive proof (which uses information theory) for it. Lovasz Local Lemma was first discovered in [2] but the proof is not constructive. The first constructive proof was given in [1], and the version we are going to cover in this lecture is derived from [3].

In many combinatorial problems, the objective is to prove the existence of some combinatorial object, and this object can be specified as an avoidance of bad events. An usual approach is to use a probabilistic argument, i.e. proving the object (understood as event) occurs with non-zero probability. Examples include graph coloring, where the bad events are two neighboring nodes being monochromatic; and k-SAT, where the bad events are that the clauses are not satisfied.

Formally, in a probability space, let the bad events be \(A_1, A_2, \ldots, A_n \), and we would like to prove
\[
\mathbb{P}(\bigcap_i \neg A_i) > 0
\]

One naive way to do this is using union bound
\[
\mathbb{P}(\bigcup_i A_i) \leq \sum_i \mathbb{P}(A_i)
\]

And we need to show the right hand side is strictly less than 1. However, this bound can be very loose, especially when the number of events are large, or the probability of a certain event is large, in which case the right hand side of the above can be larger than 1. Another approach is that, when the \(A_i \)'s are mutually independent, we have
\[
\mathbb{P}(\bigcap_i \neg A_i) = \prod_i (1 - \mathbb{P}(A_i))
\]

so we only need to show \(\mathbb{P}(A_i) < 1, \forall i \). But usually, the \(A_i \)'s are not mutually independent and the above argument does not work. What Lovasz Local Lemma does is that it relaxes the mutually independence requirement to some ‘limited dependence requirement’, but still get a similar result as the mutually independent case. To formally state the Lovasz Local Lemma we need the following definitions.

Definition 1 Given events \(A_1, \ldots, A_n \) and a undirected graph \(G = (V, E) \) where the vertices \(V \) are the set of events, we say \(G \) is the dependence graph for the events if \(\forall i, A_i \) is independent from events \(\{ A_j : j \neq i \text{ and } A_j \text{ is NOT a neighbor of } A_i \} \). We also define \(\Gamma(A_i) \) to be the the set of neighbors of \(A_i \) in \(G \), and \(\Gamma^+(A_i) = \{ A_i \} \cup \Gamma(A_i) \)

We now formally state the Lovasz Local Lemma.

Theorem 2 (General Lovasz Local Lemma) Suppose \(A_1, \ldots, A_n \) are bad events with dependence graph \(D \). If \(\exists x_1, \ldots, x_n \in (0, 1) \) such that \(\forall i \),
\[
\mathbb{P}(A_i) \leq x_i \Pi_{j \in \Gamma(A_i)} (1 - x_j)
\]
then \(\mathbb{P}(\bigcap_i \neg A_i) \geq \Pi_{j=1}^n (1 - x_j) > 0 \)

There is also a symmetric version of Lovasz Local Lemma.

Theorem 3 (Symmetric Lovasz Local Lemma) Given events \(A_1, \ldots, A_n \), and each \(A_i \) is independent from all but at most \(d \) other events (in other words, the events have a dependence graph with maximum degree upper bounded by \(d \)). If \(\exists p > 0 \text{ s.t. } \forall i, \mathbb{P}(A_i) \leq p \text{ and } p(d + 1) \leq \frac{1}{e} \), then \(\mathbb{P}(\bigcap_i \neg A_i) > 0 \)
Remark The Symmetric Lovasz Local Lemma is an easy corollary of the General Lovasz Local Lemma. Think of \(x_i = \frac{1}{d+1} \in (0,1) \), then \(\forall i \),

\[
P(A_i) \leq p \leq \frac{1}{d+1} < \frac{1}{d+1}(1 - \frac{1}{d+1})^d \leq x_i \Pi_{j \in \Gamma(A_i)} (1 - x_j)
\]

where we have used \(|\Gamma(A_i)| \leq d \). Then by the general Lovasz Local Lemma, we have \(\mathbb{P}(\cap_i \bar{A}_i) \geq (\frac{d}{d+1})^n > 0 \)

2 Applications

We now give two applications of Lovasz Local Lemma.

Hypergraph Coloring Given hypergraph \(H = (V, E) \), where each edge \(e \in E \) is a subset of vertices. We want to assign colors to each vertex, i.e. find a map \(e : V \rightarrow \{\text{red, blue}\} \), such that no edge is monochromatic. In general deciding if there exists a coloring of a hypergraph is NP-hard. However if the hypergraph satisfies certain conditions, we can guarantee a coloring exists. In details, we assume in the hypergraph, each edge has at least \(k \) vertices, and no edge intersects more than \(d \) other edges. Then we can show if \(\epsilon(d+1) \leq 2^{k-1} \), there exists a coloring. To see this, we randomly color all the nodes uniformly. Define event \(A_i \) to be the event edge \(i \) is monochromatic. Then \(\mathbb{P}(A_i) \leq p = \frac{1}{d} + \frac{1}{d} = \frac{1}{d^2} \), and each \(A_i \) is independent from all but at most \(d \) other events. Since \(ep(d+1) \leq 1 \), we can apply the Symmetric Lovasz Local Lemma and conclude \(\cap_i \bar{A}_i \) happens with positive probability.

k-SAT Suppose there are \(n \) boolean variables, \(x_1, \ldots, x_n \), and \(m \) clauses \(C_1, \ldots, C_m \), where each clause is a disjunction of \(k \) literals (a literal is a \(x_i \) or its negation \(\bar{x}_i \)). For example, if \(k = 3 \), a clause could be \(C_1 = x_1 \lor x_3 \lor \bar{x}_4 \). The objective of k-SAT is to decide whether there exists an assignment of \(x_1, \ldots, x_n \) such that all the clauses are satisfied. This is in general a NP-hard problem (when \(k \geq 3 \)) but we can use Lovasz Local Lemma to show that when the clauses satisfy certain conditions, a satisfying assignment exists. Given a k-SAT instance, the condition is that no variables appear in more than \(2^{k-2}/k \) clauses. To see this, we randomly assign values to \(x_1, \ldots, x_n \). Let \(A_i \) be the event that clause \(C_i \) is not satisfied. Notice each \(C_i \) have \(k \) variables, we have \(\mathbb{P}(A_i) \leq p = \frac{1}{2^k} \). Since each variable appears in no more than \(2^{k-2}/k \) clauses, \(A_i \) is independent from all but at most \(d = 2^{k-2} \) other events. We can check \(p(d+1) < \frac{1}{2} \), therefore we can avoid all events with positive probability. Hence a satisfying assignment exists.

3 A Constructive Proof of Lovasz Local Lemma

In this section, we will give an efficient randomized algorithm that, when the conditions in Lovasz Local Lemma hold, can output a sample in the probability space that avoids all the bad events \(A_i \) in polynomial time. We will state and analyze the algorithm in the context of the k-SAT problem.

Theorem 4 There exists an algorithm, such that given a k-SAT instance, that is, a set of \(n \) variables \(x_1, \ldots, x_n \) and \(m \) clauses \(C = \{C_1, \ldots, C_m\} \) where each clause depends on exactly \(k \) variables, when each variable \(x_i \) appears in less than \(\frac{2^{k-3}}{k} \) clauses,\(^1\) the algorithm will output a satisfying assignment for this k-SAT instance in \(\text{poly}(n, m) \) time.\(^2\)

To introduce the algorithm, we define a undirected graph \(G = (V, E) \) whose nodes are the clauses \(C \), and two clauses \(C_i \) and \(C_j \) are connected if and only if they share a common variable. We define \(vbl(C_i) \) to be the set of variables in \(C_i \). We define \(\Gamma(C_i) \) to be the set of neighbors of \(C_i \) in \(G \), and we define \(\Gamma^+(C_i) = \Gamma(C_i) \cup \{C_i\} \). We also define \(d \) to be the maximum degree of the graph, and we have \(d < 2^{k-3} \). The algorithm is given in Algorithm 1.

As we can see, the algorithm contains a main function ‘Solve’ and a recursive function ‘Fix’. We now analyze the algorithm. We have the following two claims.

\(^1\)The optimal quantity here should be \(\frac{2^{k-3}}{k} \). To simplify the proof we prove a suboptimal quantity \(\frac{2^{k-3}}{k} \).

\(^2\)Here we need to assume the following two operations can be conducted efficiently. First, we can efficiently sample from \(\{0,1\}^n \) uniformly. Second, given an assignment \(\sigma \) and a Clause \(C_i \), we can efficiently check if \(C_i \) is violated by \(\sigma \).
Algorithm 1 Lovasz Local Lemma Search (k-SAT)

1: function Solve\((x, \mathcal{C}) \)
\(\triangleright x \) is the set of variables, \(\mathcal{C} \) is the set of clauses

2: \(\sigma \leftarrow \text{a uniformly random assignment in } \{0, 1\}^n \)

3: while \(\exists C_i \) such that \(C_i \) is violated by \(\sigma \) do

4: \(\sigma \leftarrow \text{Fix}(\mathcal{C}, \sigma, C_i) \)

5: return \(\sigma \)

6: function Fix\((\mathcal{C}, \sigma, C_i) \)

7: \(\sigma' \leftarrow \text{resample the variables in vbl}(C_i) \), while other variables same as \(\sigma \)

8: while \(\exists C_j \in \Gamma^+(C_i) \) such that \(C_j \) is violated by \(\sigma' \) do

9: \(\sigma' \leftarrow \text{Fix}(\mathcal{C}, \sigma', C_j) \)

10: return \(\sigma' \)

Claim 5 Assuming ‘Fix’ can terminate, ‘Solve’ calls ‘Fix’ for at most \(m \) times and outputs a satisfying assignment.

Proof Let \(D_i \) be the set of clauses that lie within the same connected component as \(C_i \) in \(G \). Assume Fix\((\mathcal{C}, \sigma, C_i) \) terminates. Then the returned assignment must satisfy all clauses in \(D_i \), while the variables that is not involved in any clause in \(D_i \) remain the same as \(\sigma \). Therefore, after each call of ‘Fix’ by ‘Solve’, the number of violated clauses decreases by at least 1. Hence ‘Solve’ calls ‘Fix’ for at most \(m \) times, and will output a satisfying assignment. ■

Claim 6 ‘Fix’ terminates after \(\text{poly}(n, m) \) resampling procedures.

Proof We can understand the operation of ‘Fix’ in the following way. Suppose the input assignment to ‘Fix’ is \(\sigma_0 \), and then ‘Fix’ will repeatedly calls itself and conduct many resamplings (Line 7 in Algorithm 1). We let the \(t \)-th resampled assignment be \(\sigma_t \), and in the \(t \)-th resampling, let the clause being resampled be \(C_{t_t} \), and let the vbl\((C_{t_t}) \) part of \(\sigma_t \) be \(r_t \) (which is a \(k \)-bit random string). We define \(\text{Log}_t = C_{t_1}C_{t_2}\ldots C_{t_t} \), which is a record of the clauses being resampled. We also define \(R_t = r_1r_2\ldots r_t \) which is the concatenation of all the random bits used for resampling. \(R_t \) has length \(kt \).

We claim that we can recover \(R_t \) from \(\text{Log}_t \) and \(\sigma_t \). Given \(\sigma_t \) and \(\text{Log}_t \), we know that \(\sigma_t \) is constructed from \(\sigma_{t-1} \), but with the variables in \(\text{vbl}(C_{t_t}) \) being replaced by \(r_t \). Hence, \(r_t \) are the values of the \(\text{vbl}(C_{t_t}) \) part in assignment \(\sigma_t \). In this way we can recover \(r_t \). Next, notice that \(\sigma_{t-1} \) violates \(C_{t_t} \), therefore, the \(\text{vbl}(C_{t_t}) \) part of \(\sigma_{t-1} \) can be uniquely determined, while \(\sigma_{t-1} \)'s other variables are the same as \(\sigma_t \). Hence we can also recover \(\sigma_{t-1} \). Then repeat this procedure, we can recover all \(r_{t-1}, \ldots, r_1 \), and hence we can recover \(R_t \).

Then, we can apply the data processing inequality,
\[
H(R_t) \leq H(\text{Log}_t, \sigma_t) \leq H(\text{Log}_t) + H(\sigma_t)
\]
Since \(\sigma_t \) have \(n \) bits, \(H(\sigma_t) \leq n \). Since \(R_t \) is a \(kt \)-bit uniformly random string, \(H(R_t) = kt \). Therefore, we have
\[
H(\text{Log}_t) \geq kt - n
\]
The next step is to upper bound \(H(\text{Log}_t) \). We provide the following encoding of \(\text{Log}_t \). First, we encode \(C_{t_t} \) using \(\log m \) bits. Then, notice \(C_{t_1}, \ldots, C_{t_t} \) can be understood as the recursive tree \(\tau \) of the algorithm. \(\tau \) is rooted at \(C_{t_t} \), and \(C_{t_t} \) is a parent of \(C_{t_j} \) if and only if the run of ‘Fix’ on \(C_{t_j} \) calls ‘Fix’ on \(C_{t_t} \). By the nature of the algorithm, if \(C_{t_i} \) is a child of \(C_{t_j} \), then \(C_{t_i} \in \Gamma^+(C_{t_j}) \). Using this special structure we can embed \(\tau \) in a infinite tree \(T \), where \(T \) is rooted at \(C_{t_t} \), and is constructed in the following way: each node \(C_{t_j} \) has exactly \(d + 1 \) children, each representing a element in \(\Gamma^+(C_{t_j}) \). Then \(\tau \) corresponds to a subtree of \(T \) rooted at the root of \(T \) with size \(t \). By some counting arguments, \(T \) has no more than \((4(d + 1))^t \) such

\[17-3\]
subtrees, and hence τ can be encoded using $t \log 4(d + 1) < t(k - 1)$ bits, and hence Log_t can be encoded using $\log m + t(k - 1)$ bits. Therefore,

$$\log m + t(k - 1) \geq H(\text{Log}_t) \geq kt - n$$

This gives $t \leq n + \log m$, i.e. the ‘Fix’ must terminate after no more than $n + \log m$ resamplings.

It is easily seen that the two claims lead to Theorem 4, and we can conclude the algorithm terminates after no more than $m(n + \log m)$ resampling procedures.

References

