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1 Outline

In this lecture, we will cover the notion of extension complexity and its relationship to problems in nonde-
terministic communication complexity and hardness of approximation.

2 Context: Linear Programming

The general setup of a linear programming problem is to maximize some linear objective function f(x) = c>x
over all x ∈ Rn subject to a collection of linear constraints. The constraints can be expressed in the form

Ax ≤ b,

where A is a m × n matrix, x is a vector of size n, and b is a vector of size m. Each of the m linear con-
straints that A imposes on x is called a facet, and requires that x lie in a corresponding closed halfspace in Rn.

Our understanding of linear programs boils down to the following result:

Theorem (Fundamental Theorem of Linear Programming). The objective function f(x) of any linear pro-
gram is maximized at one of the vertices of the convex polytope cut out by the constraints Ax ≤ b.

This theorem tells us that LPs can be reformulated as the following problem: maximize a linear objective
function f(x) = c>x over a discrete set X ⊂ Rn. In this framework, the associated polytope is the convex
hull of the set X, denoted Conv(X).

Linear programming problems can be solved efficiently (polynomial time) in the “size of the program”,
i.e. the size of the constraint matrix A. In other words, we can efficiently maximize c>x over x in any
polytope with only poly(n) facets (as long as n is polynomial in the relevant input parameter).

Example (Maximum-weighted bipartite matching).

Suppose that we are given a weighted bipartite graph G = (V1, V2, E,W ), where E denotes the collection of
edges between V1 and V2 and W denotes the corresponding weights of the edges. The problem is to find a
matching with maximal total weight.

This can be reformulated as the following linear program: we have a variable xe for each e ∈ E, where
we think of xe = 0 (the edge is not in the matching) or xe = 1 (the edge is in the matching), although the
linear program does not explicitly require that the xe be integers. We then have the following constraints:

xe ≥ 0 for all e ∈ E,∑
e=(v,w)

xe ≤ 1 for all fixed v ∈ V1 ∪ V2.

Note that if all of the xe are integers and satisfy the above constraints, then the assignment of xe ∈ {0, 1}
corresponds to a matching. Finally, the objective function for this LP is given by

f(x) =
∑
e∈E

wexe.
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A priori, it is unclear that solutions to this LP correspond to matchings of maximum weight. However, the
Birkoff-von Neumann theorem states that the polytope defined by the above constraints is the convex hull
of points with integer coordinates (in particular, it says that any doubly stochastic matrix can be written
as a convex combination of permutation matrices). Therefore, maximizing the objective function over the
vertices of the polytope will in fact give us a matching with maximal weight. Since the number of variables
and the number of constraints defining this LP are O(n2) = poly(n), we conclude that this problem can be
solved efficiently by linear programming.

On the other hand, consider an NP-hard problem, such as max clique. It is possible to write down linear
programs which solve the max clique problem; however, naive attempts to do this produce linear programs
with exponentially many facets. In particular, the clique polytope in Rn2

, defined to be the convex hull of
all points x ∈ {0, 1}n2

that describe a set of edges on the vertex set [n] producing a clique, can be shown to

have Ω(2(n2)) facets. Since max clique is NP-hard, we should expect any linear program solving this problem
to have exponential size.

3 Extended Formulations

Before giving a formal definition of an extended formulation, we give an example.

Example (The Permutahedron).

Inner description: the permutahedron P ⊂ Rn is defined to be the convex hull of {(π(1), ..., π(n)), π ∈ Sn},
i.e. all permutations of [n] thought of as vectors.

Outer description: define a variable xi for each i ∈ [n] (corresponding to the value of the ith coordinate of
a vector in Rn). Then, for every nonempty, proper subset S ⊂ [n], we have the constraint

∑
i∈S

xi ≤
n∑

k=n−|S|+1

k.

This gives us 2n − 2 facets defining P ; at first glance, this seems to imply that linear programming on the
permutahedron requires exponential time. However, it turns out that we can introduce extra variables to
realize the permutahedron as the projection of a higher-dimensional polytope which has only polynomially
many facets!

To this end, introduce variables yi,j for all pairs (i, j); intuitively, yi,j corresponds to the indicator function
χ(π(i) == j). To match this intuition, we have the constraints∑

j

yi,j ≤ 1 for all i ∈ [n],
∑
i

yi,j ≤ 1 for all j ∈ [n],

yi,j ≥ 0 for all (i, j), and xi =

n∑
i=1

jyi,j for all i ∈ [n].

In particular, if the matrix (yi,j) corresponds to a permutation matrix, then the vector (xi) corresponds to
a vertex in the permutahedron. Now, the Birkhoff-von Neumann theorem applies again: the constraints on
the yi,j tell us that the matrix Y = (yi,j) is a doubly stochastic matrix, hence a convex combination of per-

mutation matrices. Thus, if we define the polytope P̃ ⊂ Rn2+n to be the polytope satisfying the constraints
defined above, the projection projx(P̃ ) of P̃ onto its first n coordinates is exactly P . Furthermore, P̃ has
only n2 + 3n facets defining it, so we can efficiently solve linear programming problems on P̃ , which gives us
a way to solve linear programming problems on P .

With this in mind, we now formally define extended formulation.
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Definition (Extended Formulation). An extended formulation of a polytope P ⊂ Rn defined by Ax ≤ b is
a polytope P̃ ⊂ Rn+r defined by a system

Cx+Dy ≤ d, x ∈ Rn, y ∈ Rr,

such that the projection projx(P̃ ) = P .

Remark. The geometric intuition for why this may be useful is the following: polyhedra often have fewer
high-dimensional facets than lower dimensional facets. For example, the cube in R3 has only 6 faces, but 12
edges.

Given an extended formulation P̃ of P , we define the size of P̃ to be the number of constraints defining P̃ .

Definition. The extension complexity xc(P ) of a polytope P is the minimum size of an extended formulation
P̃ of P .

Example. If P denotes the permutahedron, we have that xc(P ) ≤ n2 + 3n.

As hinted at earlier, if xc(P ) is polynomial in the relevant input parameter n, then maximizing linear
functions over P can be done in polynomial time: run a polynomial time linear programming algorithm on
P̃ and project the output back down to P . This fact provides a large source of bogus proofs that P = NP,
by taking some NP-hard problem (expressed as an intractable linear programming problem) and claiming
to have a polynomial size extended formulation of it. More interestingly, it is possible to rule out proofs of
P = NP of this form, using communication complexity!

4 Yannakakis’ Factorization Theorem

To relate extension complexity to communication complexity, we pass through the concept of nonnegative
rank, which we define here.

Definition. An m× n matrix M has nonnegative rank (denoted rank+(M)) at most r if it can be factored
in the form M = AB where A is a nonnegative m× r matrix and B is a nonnegative r × n matrix.

Equivalently, we say that rank+(M) ≤ r if and only if M =
∑r
i=1Mi where each Mi is a nonnegative matrix

with rank(Mi) = 1.

We relate extension complexity to nonnegative rank in the following way: if P is a polytope with v vertices
(denoted x1, ..., xv) and f facets, we define the slack matrix (a v × f matrix) associated to P to be

SP = (bi −Ai · vj)i,j .

In other words, the (i, j) entry of SP measures the slack of the ith inequality for the jth vertex. We then
have the following result.

Theorem (Yannakakis). xc(P ) = rank+(SP ).

Proof. (sketch) We only prove the inequality xc(p) ≥ rank+(SP ), which is what we need to prove lower
bounds on xc(P ). Let P̃ denote an extended formulation of P with constraints Cx + Dy ≤ d. Since the
inequalities Cx+Dy ≤ d imply that Ax ≤ b for all x ∈ Rn, Farkas’ lemma in convex geometry tells us that
each of the m constraint vectors defining Ax ≤ b can be written as a nonnegative linear combination of the
constraint vectors defining Cx + Dy ≤ d. Therefore, if there are r constraints defining P̃ , the slack matrix
SP can be written as a nonnegative linear combination of r (nonnegative) rank one matrices (corresponding
to the constraints of P̃ ), proving that rank+(SP ) ≤ xc(P ).
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5 Connection to Communication Complexity

Given our lower bound xc(P ) ≥ rank+(SP ), the connection to communication complexity becomes clearer.
Recall the following result from earlier this semester: if the |X| × |Y | matrix Mf associated to a function
f : X × Y → {0, 1} can be covered by t monochromatic rectangles, then cc(f) ≤ log2(t). The upper bound
log2(t) also holds for the nondeterministic communication complexity ncc(f), which is defined as follows.
Alice and Bob have inputs x and y respectively, while a prover Carlos attempts to convince Alice and Bob
that f(x, y) = 1. A successful communication protocol is one where if f(x, y) = 1, there exists some z such
that Alice and Bob accept when Carlos sends them both z, while if f(x, y) = 0, no choice of z will convince
Alice and Bob to accept. The nondeterministic communication complexity ncc(f) is the minimum number
of bits that Carlos must send in such a communication protocol.

Lemma. If Mf can be covered by t monochromatic rectangles, then ncc(f) ≤ log2(t).

Proof. If M(f) can be covered by t monochromatic rectangles, then to convince Alice and Bob that f(x, y) =
1 (when Alice and Bob have inputs x and y), Carlos sends the rectangle i ∈ [t] that (x, y) belongs to. Clearly
such a communication requires log2(t) bits. Alice and Bob can verify that f(x, y) = 1 given i by computing
f(x, y′) (in Alice’s case) or f(x′, y) (in Bob’s case) for some (x, y′) or (x′, y) in the ith rectangle. If f(x, y) = 0
then the computation described in the previous sentence will lead Alice and Bob to both reject. Therefore,
this is a valid communication protocol requiring log2(t) bits of communication, proving that ncc(f) ≤ t.

Using the above result as a prior that nondeterministic communication complexity can be related to some
notion of “rank” of a matrix, we proceed to relate rank+(SP ) (for any polytope P ) to the nondeterministic
communication complexity of an associated function f = Face-Vertex(P ). The function f : V (P )×F (P )→
{0, 1} takes in a vertex of P and a facet of P , and outputs 0 on input vi, fj if and only if the inequality
defined by fj is an equality for the vertex vi.

Claim. ncc(Face-Vertex(P)) ≤ log2(rank+(SP )).

Proof. Let rank+(SP ) = r, so that Sp =
∑r
i=1Mi with each Mi nonnegative and rank 1; for the purposes

of a communication protocol, Alice and Bob can have access to this decomposition as well as factorizations
Mi = αi(βi)

> for each i (this is the rank 1 property). As described above, the function f(vi, fj) = 1 if and
only if the (j, i)-entry of SP is nonzero, which is true if and only if the (j, i)-entry of Mk is nonzero for some
1 ≤ k ≤ r. Moreover, the (j, i)-entry of Mk = αk(βk)> is nonzero if and only if (αk)j(βk)i 6= 0. Thus, to
prove to Alice and Bob that f(vi, fj) = 1, Carlos sends k to Alice and Bob; Alice verifies that (βk)i 6= 0
and Bob verifies that (αk)j 6= 0. If f(vi, fj) = 0, then one of those two verifications will fail, so at least one
of Alice and Bob will reject. Thus, this is a valid communication protocol which requires that Carlos send
log2(r) bits, proving that ncc(Face-Vertex(P )) ≤ log2(rank+(SP )).

To summarize, we have proved the inequality xc(P ) ≥ ncc(Face-Vertex(P )), so proving lower bounds on the
extension complexity of a polytope has been reduced to lower bounds in communication complexity. This
has led to (unconditional) lower bounds on the extension complexity of polytopes related to various NP-hard
problems.

6 Generalization to Approximations, and Braverman-Moitra

Let P ⊂ Rn be a polytope, and consider the following generalization of extended formulation.

Definition. A ρ-approximate extended formulation for P is an extended formulation P̃ of P such that for
all linear objective functions w,

max[w>x, x ∈ P ] ≤ max[w>x, (x, y) ∈ P̃ ] ≤ ρmax[w>x, x ∈ P ],

i.e. such that a ρ-approximate solution to any linear optimization problem on P can be obtained by solving
the corresponding linear optimization problem on P̃ .
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The extension complexity xcρ(P ) is then the minimal size of a ρ-approximate extended formulation of P .

Approximate extended formulations can be usefully rephrased in terms of extending a nested pair of polytopes
P ⊂ Q. An extended formulation for (P,Q) is some polytope K̃ defined by the constraints Cx + Dy ≤ d,

such that projx(K̃) = K for some P ⊂ K ⊂ Q. Denote by xc(P,Q) the minimum size of such a K̃. Then, it
turns out that a ρ-approximate extended formulation of P is equivalent to an extended formulation of the
pair (P, ρQ) where Q is a suitably defined auxiliary polytope related to P .

In the setting of a pair P ⊂ Q, one can define an analogous slack matrix SP,Q to be

SP,Q = (bi −Aivj)i,j ,

where (A, b) form the constraints defining Q and v1, ..., vn are the collection of vertices that span P . We
then have the following result generalizing Yannakakis’ factorization theorem.

Theorem (Braun et al.). xcρ(P ) = rank+(SP,ρQ).

Finally, in some recent work, Braverman and Moitra proved optimal lower bounds for the extension complex-
ity of approximating max clique. They accomplished this by phrasing the problem in terms of the extension
complexity of (P,Q) for a suitably chosen Q, and obtaining lower bounds for rank+(SP,Q) by a reduction
to bounding the nondeterministic communication complexity of unique disjointness. In the end, they obtain
the following result.

Theorem (Braverman-Moitra). Obtaining a n1−ε-approximation of max clique has extension complexity
2Ω(nε).
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