Today: Circuits (Non-Uniform Computation)

- Circuits
 - Defn. + Parameters
 - Classes
 - P vs. P/poly

- Other non-uniform models
 - Formulas
 - Branching Programs

- Circuit size $\leq O(BP\text{-size}) \leq O(Formula\text{-size})$

- Counting arguments

- Neupokur lower bound for BP-size.

Circuit: By Picture

Diagram showing a circuit with NOT, AND, and OR gates.
Definition: Circuit on basis (AND, OR, NOT):
- DAG with \(n \) designated input nodes \(X_1 \ldots X_n \)
- \(m \) designated output nodes \(Y_1 \ldots Y_m \)
- Input nodes: ZERO IN-DEGREE
- Output nodes: ZERO OUT-DEGREE
- \(n + m \) Gates: All other nodes labelled with one of
 \[
 \begin{align*}
 \text{AND} & - \text{In-degree} 2 \\
 \text{OR} & - \quad \text{2} \\
 \text{NOT} & - \text{In-degree} 1
 \end{align*}
 \]

Circuit computes function \(f: \mathbb{B}^n \rightarrow \mathbb{B}^m \)
\(f(x_1 \ldots x_n) = \) obtained by filling in labels at all nodes
- Input \(x_i \leftarrow A_i \)
- Gate: if all in-vertices labelled 0/1
 then \(\Rightarrow \rightarrow \) gate labelled
 according to its type.
- Output = \(Y_1 \ldots Y_m \).

Size of circuit = \# wires (\# edges).
Depth = longest path.
Central Questions: \[\mathcal{F} \in \text{NP} \] s.t.

"Non-uniform Computation": E.g. for language \(L \subseteq \{0,1\}^* \)

"Circuit \(C_n \) to decide \(L_n = L \cap \{0,1\}^n \)"

\[P/\text{poly} = \text{Computation that can be carried out by poly size circuits.} \]

Notation: from "Circuits = Uniform Computation + Advice".

Information that is trusted by short, and single advice for all inputs of length \(n \).

Can have any class \(P, \text{NP}, \Sigma_2, \ldots \) with any amount of advice

\(1, 100, \text{poly}(n), \text{Exp}(n), 2^n, \ldots \)

Notation

\[\frac{\text{NP}}{\text{poly}} \quad \text{or} \quad \frac{\text{P}}{\text{poly}} \quad \text{or} \quad \frac{\text{L}}{\text{Exp}(n)} \]
Key Question:

1. How does non-uniformity help P/poly compare with uni?

 1. $P \leq P/\text{poly}$

 Proof: TM Tableau

 $$\text{TIME}(t(n)) \leq \text{SIZE}(t(n) \log t(n))$$

2. Unary Halting $\leq P/\text{poly}$

 Proof: Circuit $\exists j$ size 1 for each input.

3. $NP \leq P/\text{poly}$

 - Unknown
 - If true, violates some uniform complexity assumption
 (Almost like "NP = P")

4. In 80s, 90s, 90s -- "Razborov" --

 tried to show $P = NP$ by showing

 $NP \neq P/\text{poly}$. Not successful.
Counting Arguments ➔ Circuit Lower Bounds

circuits of size $\leq O(s) \leq 2^{O(s)}$

- Circuit described by ≤ 2 wires into each gate, + label on each node.

- $O(2^s)$ possibilities per gate ➔ $O(s)$ possibilities in all.

- Boolean

- $\#^1$ functions on n bits $\geq 2^n$

- \exists function that requires $\log (2^{2^n})$ wires.

$$? \geq \frac{2^n}{n}$$

Does not show:

1. Some $f \in \text{NP}$ requires large size

2. Some $f : \{0,1\}^n \rightarrow \{0,1\}^n$ is easy to compute by taking the invert.
State of the art:

- Watanabe + Morizumi 2002: $5n - o(n)$ over De Morgan basis
- Find et al. 2016: $\left(3+\frac{1}{8}\right)n$ over any basis

[affine dispersers]

Today: weaker non-uniform models with quadratic lower bounds.

Weak Model 1: Formula

$$\text{DAG} \Rightarrow \text{TREE} : \text{Out degree of every node} = 1.$$

Weak Model 2: Branching Program

Example

$B^p = \text{DAG}$: Vertices labelled x_1, \ldots, x_n or 0/1.

- Out degree 2
- Edges labelled 0/1
- 1 designated start node.
- Layered BP: Edges from layer i to layer i+1.
 - Width of Layered BP = Max number of nodes in a layer.
 - "log-width" = Non-uniform Space.

Natural reason to study BPs: Space Complexity.
Today: A mechanism to prove formula lower bounds.

Exercise: Circuit size ≤ 0(BP size) ≤ 0(formula-size).

Main Theorem: Distinctness function needs Ω(\text{log}(n^2)) B.P. size.

Claim: Distinctness function \(D_{n, 2\log n} \) has 2nlogn bits.

Inputs, viewed as n elements of \([n^2] \).

\[D_{n, 2\log n}(y_1, \ldots, y_n) = 1 \text{ if } \forall i \neq j, y_i \neq y_j. \]
Key Property of Distinctness: for every \(i \), there are many settings to \(y_{-i} \) s.t.

\[
D_{n, \log n}(y_i)
\]

1. \(f(y_i) \equiv D_{n, \log n}(y_i, y_{-i}) \) are distinct functions.

2. \(\Rightarrow \exists \) some setting \(y_{-i} \) for which BP-size \((f_{y_i}(y_i))\) large.

3. But \(\text{BP-size}(D_{n, \log n}) \geq \max_{y_{-i}} \text{BP-size}(f_{y_i}(y_i)) \)

Proof of 3

Given BP for \(D_{n, \log n} \), setting \(y_{-i} \) variables leads to BP on \(y_i \) variables that computes

\(f_{y_i}(y_i) \).
1. \(\# \{ f_{y_i} \mid y_i \neq i \} \geq \binom{n^2}{n-1} \left\lceil \frac{\log \binom{n^2}{n-1}}{\log \log \binom{n^2}{n-1}} \right\rceil \) [Each different subset \(S \subseteq [n^2] \), \(|S| = n^2 - 1 \) is a diff. function].

2. \(\text{BP-size} (f_{y_i}) \geq \frac{\log \binom{n^2}{n-1}}{\log \log \binom{n^2}{n-1}} \geq \Omega(n). \)