Today: Circuits (Non-uniform Computation)
Given a graph \(G \), let the graph \(G' \) be obtained by deleting all edges of \(G \). The output \(y \) of the graph \(G' \) is obtained by applying the function \(f \) to each node of \(G' \). Let \(f(x) = \text{AND} \) if \(x \) is connected to at least one node of degree 2. Let \(f(x) = \text{OR} \) if \(x \) is connected to at least one node of degree 1. Let \(f(x) = \text{NOT} \) if \(x \) is not connected to any node.

Define the circuit \(C \) on \(G' \) as follows:

- **Output Node**: \(y \)
- **Input Nodes**: \(x_1, x_2, \ldots, x_m \)
- ** Gates**: All other nodes labeled \(x \)
- **AND Nodes**: Zero in-degree
- **OR Nodes**: One in-degree
- **NOT Nodes**: None

DAG with no directed cycles (AND, OR, NOT)
Let any amount of advice

Can have any class \(P \), \(\text{NP} \), \(\text{NP}^c \).

Input & Output

Advice for all
by both, and each
Information that is found

from Uniform Computation

Advice +

Polynomial-Time Circuit

P-time = Computation that can be viewed by

Non-uniform Computation

For Languages \(L \).
NP ≠ P/poly. Not affordable.

\[\text{If} \ P \neq \ NP, \ \text{then} \ \text{show} \ \#P \neq \ NP \text{by reduction} \]

1) In yes, go, go. "Problem?"

Almoist take "NP" = "P".

\[\text{Explanation:} \]

if the \ P \ \text{Volunteer} \ \text{some uniform complexity}

\[\text{Unexplained} \]

NP \neq P/poly? \ \text{？}

2) Unravel \ \text{Haltings} \ / \ \text{P}

\[\text{Proof: Trivial} \]

\[\text{Time (TM) = Size (ETM) log TTM) \]}

\[\text{Proof: TM Kehan} \]

\[\text{P = P/poly} \]

0

How does new uniformly help & compare with?

Key Question:

7
Some $\text{f}(\text{poly}) \rightarrow \text{poly}$ is easy to invert.

Some $\text{NP complete} \rightarrow \text{poly}$. Does not show $\text{NP complete} \rightarrow \text{poly}$. Some $\text{f} \in \text{NP}$ requires large, i.e.

$\frac{u}{v} \leq 2^\frac{1}{n}$

where $\log_2(\frac{1}{n})$.

Therefore E function that requires

$\log_2(\frac{1}{n})$

Number of u bits $\leq 2^v$. Rokach

E function on u bits $\leq 2^v$

Possibilities in all possible children per gate $S_0(5)$.

Label on each node.

Circuit checked by ≥ 2 wires in each gate.

Circuit S size $= \# \text{Circuits} \& \text{Size} \leq \text{Circuit Lower Bounds}$.
Example

Bipartite - Flow

Node = 1

Data => Tree => Connected & Every

(ex1)

No edge among vertices of the same type.

1. Directly adjacent node
2. Indirectly adjacent nodes

1. Edges are labeled 0/1
2. Out degree 2
3. In degree 0

BP = DAG : Vertices Labeled \(x\) or \(0/1\)

Tree Model 2:

Formulas

Weather: Weaker non-uniiform models with a quadratic

Formal definition:

- \((\alpha + \text{error}) \)

First 1 to 306 @ (3+\text{error})

Laws and Morison

Share of the art.
Main Theorem: Distinguish function needs $\Theta(n^2)$

\[\text{Kronecker} \colon \text{Grunt size} \leq O(\text{Grunt size}) \leq O(\text{formal size}) \]

\[\log n = \max \text{height} \]

\[\text{Height of layered BP} = \max \text{number of nodes in a layer} \]

\[\text{Edges from layer i to layer i+1} \]

\[\text{Layered BP} : \text{Edges} \text{ in each layer} \]
Given P_B for Domain, nothing h^1. Where

$$\text{max} \, \text{B.P} \, \text{size}(f_{h^1}) \geq \frac{n}{2}$$

But $\text{B.P} \, \text{size}(f_{h^1}) \leq 1$.

Choose functions f_{h^1} of length 1. Let

$$f_{h^1} \in \text{Domain} (h^1; h^1)$$

There are many options to h^1. At

Key Property of $B.P.$: For every λ,
\[
\frac{\log (n-1)}{2} < 10^a \left(\frac{1}{\sqrt{n-1}} \right) x \leq 52(n) \Rightarrow \text{Pr-nise (f-\#):} \leq 10^b(n^2).
\]