Today

SPACE & NON-DETERMINISM

- L vs NL vs. $coNL$

- $PSPACE = NPSPACE = coNPSPACE$

- $PSPACE$, Games, QBF

--- x ---

Review of Time vs. Space vs. Non-Determinism

$(A \rightarrow B \text{ below } \Rightarrow A \leq B)$

--- x ---

A \rightarrow B (To be proved today)
Understanding NL

1. ST-conn (aka PATH) is NL-complete

 Input: Directed graph G, vertices s,t.
 Goal: Find a path from s to t in G.

 [Proof: Exercise]

2. ⊗ PSI Problem 4: A^k can be computed in space $O(k \cdot \log n)$

 (i) $(A^n)_{s,t} = 1 \iff$ Graph with adjacency matrix A has a path from $s \rightarrow t$ (assume $A_{ss} = 1$)

 (ii) $NL \subseteq SPACE (\log^2 n) \subseteq L^2$

 $NPSPACE = PSPACE = \bigotimes NPSPACE$

Aside: $NL \subseteq L^2 \cap \#P$

Open: $NL \subseteq TIME \cdot SPACE (\text{poly}(n), \text{polylog}(n))$?

"Steve's Claim"
[l for Stephen Cook]
Main Theorem

Key Result: Immerman-Szelepsenyi '88

Theorem: $\text{NL} = \text{CoNL}$

Proof:

1. Will give non-deterministic logspace algorithm that verifies there is no path from S to T in G_1.

2. Will give deterministic logspace algorithm $V(G_1, S, T, k, N_{k-1}; \pi)$ with the following property

 (1) If $N_{k-1} = \#$ vertices reachable by paths of length $\leq k-1$ from S in G_1

 $\exists \pi \text{ path of length } \leq k \text{ from } S \text{ to } T$

 then $\exists \pi \pi = \pi \sigma, \sigma \in \Sigma^* V(, \pi) = 1$

 (2) If $N_{k-1} = \#$ vertices reachable by paths of length $\leq k-1$ from S in G_1

 $\forall \text{ no path of length } \leq k \text{ from } S \text{ to } T$

 then $\forall \pi \exists \pi \pi \neq \pi V(, \pi) = 0$.

• Will defer construction $\mathcal{V}(\)$.

• But why is it useful? How to get N_r?

• Key idea: **Inductive-Counting**

 Can we N_{r-1} to (non-deterministically) compute N_r?

$\mathcal{W}(G, s, a, N_{r-1}, N_r; \psi)$:

Output:

• if $N_{r-1} = \#$ vertices in G reachable in $\leq k-1$ steps from s

 1. $N_r = \... \leq k \...

 then $\exists \psi \text{ s.t. } \mathcal{W}(\psi) = 1$

• if $N_{r-1} = \text{correct}$

 2. $N_r = \text{incorrect}$

 then $\forall \psi \mathcal{W}(\psi) = 0$
\[\Psi = (\langle i, b_i, \prod_{i,k}^{b_i} \rangle_{i \in V}) \]

\[b_i = 1 \text{ if } \exists \text{ path from } S \text{ to } i \text{ of length } \leq k \]

\[\prod_{i,k}^1 = V_1, V_2, \ldots, V_k = i \quad \text{and } S \rightarrow V_1 \rightarrow V_2 \cdots \rightarrow V_k \]

(proof: \exists \text{ path from } S \rightarrow i \text{ of length } \leq k)

\[\prod_{i,k}^0 = \prod_{i,k}^1 \quad \text{ s.t. } \quad V(6_1, s, i, k, N_{R-1}; \prod_{i,k}^1) = 1 \]

(proof: no path from \(S \rightarrow i \) of length \(\leq k \))

\[W(6_1, s, b, N_{R-1}, N_k; \Psi) : \]

Accept if \(\sum_{i=1}^{n} b_i = N_k \) and

\[\forall i \quad V(6_1, s, i, k, N_{R-1}; \prod_{i,k}^1) = 1 \quad \text{and } \quad b_i = 0 \]

or \(S \rightarrow V_1 \rightarrow \cdots V_k = i \) \quad and \quad \(b_i = 1 \)

\[\text{PATH}(6_1, s, t; \Psi_1, \Psi_2, \ldots, \Psi_n, N_0 = 1) \]

for \(r = 1 \) to \(n \) do

if \(W(6_1, s, k, N_{R-1}, N_k; \Psi) = 0 \) reject

else continue

Accept if \(V(6_1, s, t, N_k; \prod_{t,n}) = 1 \)
Algorithm for V

To prove no path of length $\leq k$ from s to t given N_{r-1}

1. Given $N = N_{r-1}$ vertices $V_1 \ldots V_N$ with proofs that
 a. $s \to V_1$ has path of length $\leq k-1$
 b. $V_i \not\to t$.

$$V(G,s,t,k,N_{r-1}; \Pi)$$

"$\Pi = (i, b_i, \langle V_{1} \ldots V_{r-1} = i \rangle)_{i=1}^{n}$"

Accept if $\sum b_i = N_{r-1}$

- for every i either $b_i = 0$
- or $s \to V_i \to \ldots V_{r-1} \to i$

2. $i \not\to t$.
PSPACE = Complexity of Games

zero-sum

Game \(n\)-move game: Initial state = \(n\) bits = \(x\)

- \(n\) alternating moves \(P_1 \& P_2\)
 - \(x\) given \((x, m_1, m_2, \ldots, m_n)\)
 - Decidable in \(P\) if \(P_1\) wins.
 - \([P_2\ \text{wins} \iff P_1\ \text{does not}]\)

(Say by alg/circuit \(C(x, m_1, m_2, \ldots, m_n)\))

\[x \in L_{\text{game}} \iff \exists m_1 \forall m_2 \ldots \exists m_n \forall m_n \ C(x, m_1, m_2, \ldots, m_n) = 1\]

Claim: \(L_{\text{game}} \subseteq \text{PSPACE}\)

Proof: Enumerate all \(m_1, \ldots, m_n\)

Claim 2: \(\text{PSPACE} \subseteq L_{\text{game}}\)

Key Idea: (Same as Shvitz's Thm aka \(A^k \in \text{Space}(logk)\))

Player 1: "\(\exists\) accepting path from \(S \rightarrow T\) in \(2^n\) steps"

Furthermore \(M_i = S_{2^{n-1}}\) is midpoint;

Player 2: No path from \(S \rightarrow S_{2^{n-1}}\ or \ S_{2^{n-1}} \rightarrow T\)
in \(2^{n+1}\) steps in \(2^n\) steps.
Define:

\[\text{QBF} \left\{ \phi \right\} : \exists x_1 \land \exists x_2 \land \exists x_3 \cdots \land \exists x_n \phi(x_1, \ldots, x_n) = 1 \]

in 3CNF

Theorem: QBF is \text{PSPACE}-Complete.

- Alternations = \text{PSPACE} (quantifiers)
- 1 quantifier = \text{NP} (coNP)
- 2 quantifiers = ?

AT\text{PSPACE} (a(n), t(n), s(n)) = ?

\[\text{Next lecture.} \]