CS 221 LIGURE 15
Today: Power Of interaction

- Interactive Proofs
- Complexity Classes: AM, IP
- Basic Closure

Philosophical Questrin: Is reading us informative as a discussion?

Interaction:

Key difference with "Debates": A is outputting verdict. $[\leftarrow A$ is poly time bounded. $]$.

Question:- for What Languages L does there exist poops polytiven verifier V st. if $x \in L$ some prover P can convince V of this fact, i if $x \notin L$ no one an?

Answer 1: iff $\alpha \in N P$

"Lecture model"
$\left[\begin{array}{l}\text { if } V \underbrace{\text { deterministic }}_{\text {anderwer them ! }} P\end{array}=\right.$ can aminkte V, predict $\left.q_{1} \ldots q_{k}\right]$
What it V probabilistic?
"Can execute Pepsi Challenge"
Call resulting class IP.

Graph Non. Isomorphism

$$
\alpha=\left\{(G, H){\underset{\uparrow}{*}}_{\forall \pi} \quad G \neq \pi(H)\right\}
$$

permutes vertex names
The: $[G M W]: L \in \mathbb{P}$
Proof: Verifier picks $F \in\{a, H\}$ at random

$$
\pi \in S_{n} \text { at random }
$$

sounds $\pi(F)$ to prover.

- Prover: tries to guess $\hat{F} \in\{G, H\}$
- Verifier: accepts if $\hat{F}=F$.

To date: $d \in N P ?($ (open) known: $h \in \operatorname{TME}\left(n^{\log _{n}^{6}}\right)$

Two complexity Classes
(1) IP: (a) unbounded \# rounds [GMR]
(1) hidden random coins]"poker faces"
(2) AM: (a) bounded \& rounds
(b) Open randomness "no poker face"

Q: Was $L \in \mathbb{P}$ proof also a proof that $L \in A M$?
A: No. Fill needs to be hidden from P.

Many suttee issues
(1) Is many rounds = frow rounds?

$$
\begin{array}{lll}
k & \text { v. } & k+1 ? \\
k=2 & \text { vs. } & k=\text { poly }(n) ?
\end{array}
$$

(2) Is AM [Private] $=$ AM [public]

$$
\text { Is } \quad \mathbb{P} \text { [private] }=\mathbb{P}[\text { public }]
$$

(3) AM includes BPP. is AM[one-sided $]=A m[y w o$-sided $]$
(4) if $A M=Q-A M$? 1 (5) How do they relate to IP $=$ co-IP? traditional comp. Classes?

Answers
(1) $\forall k(n) \quad A m[k(n)]=A m[O(k(n))]$
in particalare $\quad A M[O(1)]=A M[2] \triangleq A M$.
(2)

$$
\begin{aligned}
& \text { AM [private }]=\operatorname{Am}[\text { public }] \\
& \mathbb{P}[\text { private }]=\mathbb{P}[\text { public }]
\end{aligned}
$$

(3) AM [one-sided $]=A M[$ two-sided $]$
(4) $A M=C O-A M \Rightarrow P H$ coltapoces

$$
\mathbb{P}=\operatorname{Co}-\mathbb{P}!
$$

(5) $N P \leq A M \subseteq \Pi_{2} ;$
$I P=P S P A C E \Longleftarrow$ Dramatic, surprising result from ' 90.

Today: Hints for all except $\mathbb{P}=$ SPACE.

Prools
Leson O: Amplification works for IP/AM

$$
\begin{gathered}
\xrightarrow[a_{1}^{(1)} \ldots a_{1}^{(t)}]{q_{1}^{(1)} \ldots q_{1}^{(t)}} \\
\vdots \\
\leftarrow a_{12}^{(1)} \cdots a_{k}^{(t)}
\end{gathered}
$$

- Acept it mejority $f\left(q^{(i)} i a^{(i)}\right)$ reept.
- Worses. Optimal prover strategy to try \& whip every coadiñate.
- Analysis: Exercise.

$$
A m[k]=A m[2 k]:
$$

morally

$$
B P \cdot \exists \cdot B P \cdot \exists \cdot C=B P \cdot \exists \cdot C
$$

$$
\text { (药) error } 2^{-n^{2}}
$$

$\underbrace{\ominus} 2^{n}$
(3B) eror $2^{-n^{2}}{ }^{4} \Rightarrow$
(2) Private . wins $=$ Phblic Coins

One-sided $=$ Two-sided
Wer: "Prove \#coins that lead to aeaeptance is lavge".
(a) Polocol tree: Cdains \# reeptivy leaves $\geqslant N_{0}$

A aue leares
At lavel i : Rover wishes to prove \# at Aubtrce $\geqslant N_{i}$

Partion q_{i}-spue into $S_{1}, S_{2}, \ldots S_{n}$

$$
\begin{aligned}
& S_{j}=\left\{q_{i} \mid \text { \# aupting leaves in } q_{i} \text {-subtree } \in\left[2^{j}, 2^{j+1}\right)\right\} \\
& N_{i j}=\left|S_{j}\right| .
\end{aligned}
$$

Need to verify (3) $\sum 2^{j} \cdot\left|s_{j}\right| \geqslant W_{i} / 2$
Pick random j w.p. $\infty 2^{j}\left|S_{j}\right|$
(1) Prove $\# \begin{cases}Q_{i} & \text { s. Protocol has } 2^{j} \text { accepting }\end{cases}$ paths after question $\left.q_{i}\right\} \geqslant N_{i j}$
ie. task g of these form

$$
\#\{x \mid \#\{y \text { st. }(x, y) \in R\} \geqslant A\} \geqslant B .
$$

Key Protocol: Gaddwasser- Sipper

- Can prove \#\{x sit. $x \in L\} \geqslant A$ (approximately) (it " $x \in L$ " in Am) in Am.
- Protocol: Pick $h_{i} \ldots h_{n}:\left\{a_{1}\right\}^{n} \rightarrow[A]$ P.w.i.
- Verifier: $j \epsilon_{v}$ [A]
- Prover : $i \in[n], x \in L$ st.

$$
h_{i}(x)=j
$$

- Next Leeture: PSPACE $\subseteq \mathbb{P}$
- Why is IP \subseteq PSPACE?

Optimal prover in PSPACE
Lexplores protool tree, picks optimal anver to each questiont

