Today

- COMPRESSION
 - SINGLE SHOT: SHANNON + HUFFMAN
 - UNIVERSAL: (START LEMPEL-ZIV)
 - MARKOV SOURCES + HIDDEN MARKOV MODELS

Up To Now: Asymptotic 'Compression
Compress n i.i.d. variable X_1, \ldots, X_n

Single-Shot:
- Sender + Receiver know P_x; design E, D
- Sender gets $X \sim P_x$
- Must send $E(x) \in \Sigma_01^*$ to receiver
- Receiver decodes $\hat{X} = D(E(x))$
- Want $\hat{X} = X$ & minimize $\mathbb{E} \left[I(E(x)) \right]$
Two Solutions

1. See [Shannon] (Note this is in contrast to his solution for asymptotic compression)

Define: Let \(l_i = \sum \log \frac{1}{P_i} \quad S^2 = S_1, \ldots, S_S \)

Design (by Kraft's inequality), \(E : \mathbb{Z} \rightarrow \{0, 1\}^* \)

and \(E(i) \in \{0, 1\}^* \)

- send \(E(X) \).

Performance:

\[
E \left[1 \cdot E(X) \right] = \mathbb{E} \left[\sum \log \frac{1}{P_x} \right]
\]

\[
\leq \mathbb{E} \left[\log \frac{1}{P(x)} + 1 \right]
\]

\[
= 1 + \mathbb{E} \left[\log \frac{1}{P(x)} \right]
\]

\[
= 1 + H(x)
\]

Optimal to within 1 bit.

(Note: follow from Shannon's asymptotic theorem that no prefix-free scheme achieves \(< H(x) \).)
Huffman

Recursive algorithm \((P_1 \ldots P_n)\)
- Sort \(P_1 \geq P_2 \geq \ldots \geq P_n\)
- Combine \(P_{n-1} \) & \(P_n\) to form new element \(Q_i \) with \(Q_i = P_i\)
 except \(Q_{n-1} = P_n + P_n\)
- \(E'\) Huffman code \((Q_1 \ldots Q_n)\);
- \(E(i) = E'(i)\) except \(E(n-1) = 0 \cdot E'(n-1)\) & \(E(n) = 1 \cdot E'(n-1)\)

Theorem: Huffman is optimal \(\forall P\).

Proof:
Ingredients 0: if \(P_1 \geq P_2 \geq \ldots \geq P_n\) then \(e_1 \leq e_2 \leq \ldots \leq e_n\)
Proof: Else swap \(e_i, e_j\) & get cost that is no more \&

2. \(e_{n-1} = e_n\): Proof look at tree. Right leaf at depth \(e_n\) must have siblings.

3. Wlog \(P_{n-1} \leq P_n\) are siblings.
"Optimal Substructure":

\[q_1 = p_1, \ldots, q_{n-2} = p_{n-2}, q_{n-1} = p_{n-1} + p_n \]

Optimal tree for \(p_1, \ldots, p_n \) with siblings \(p_{n-1} \& p_n \)
is also optimal tree for \(q_1, \ldots, q_{n-1} \) with parent \(p_n \)
as leaf.

Universal Coding: How do gzip, zip, ... work?

- Single file to compress; No distribution?
- Produces something smaller!

Central Algorithm: Lempel-Ziv + variations
- Works well empirically
- Has a "Theorem"!

Algorithm: Input \(w \in \Sigma^* \) \(\Sigma = \text{finite alphabet} \)
- Break \(w \) into \(S_0 \circ S_1 \circ S_2 \circ S_3 \ldots \circ S_m \)
 - where \(\circ \) denotes concatenation of strings
 - \(S_0 = \text{empty string} \)
 - \(S_i = S_{j_i} \circ b_i \) where \(j_i < i \)
 - \(b_i \notin \Sigma \)
- Compression of \(w \) = Encoding of \(j_1, j_2, \ldots, j_m \)
in any reasonable prefix tree
De "compressing": \((j_1, \ldots, j_m)\)
\(b_1, \ldots, b_m\)
- Can compute for \(i = 1 \rightarrow m\)
 \(S_i = S_{j_i} \circ b_i\)
- Output \(S_1 \circ S_2 \circ \ldots \circ S_m\)

How well does this perform?

Case 1: \(W_1, \ldots, W_n\) i.i.d. over \(P\) distribution over \(\Sigma^*\).

Claim: Expected length of compression = \((1 + o(1)) \cdot H(P)\)

(Proof later)

- More impressive

Case 2: \(W_1, \ldots, W_n\) drawn from "Hidden Markov Model".

\[\Rightarrow\] Expected length of compression = \((1 + o(1)) \cdot H(M)\)

Entrophy of chain

Need to define:
1. "Hidden Markov Model"
2. Entropy \(H(M)\) of Hidden Markov Model.
Markov Chain

- \(Z_1, Z_2, \ldots, Z_n, \ldots \) form a (time-invariant) Markov Chain if
 \[
 \Pr[\{Z_i \mid Z_1, \ldots, Z_{i-1}\}] = \Pr[\{Z_i \mid Z_{i-1} = a_{i-1}\}]
 = \Pr[\{Z_1 \mid Z_0 = a_0\}]
 \]

- Conditioned on last "state" \(Z_{i-1} \), distribution of \(Z_i \) doesn't depend on past.

- If \(Z_i \in \Omega = \{1, \ldots, k\} \),

 - Markov Chain specified by matrix: \(M \in \mathbb{R}^{k \times k} \)
 \[
 M_{ij} = \Pr[Z_2 = i \mid Z_1 = j]
 \]

 - Pictorially:

```
  \begin{array}{ccc}
    2 & \rightarrow & 3 \\
    \downarrow & \downarrow & \downarrow \\
    3 & \rightarrow & 1 \\
  \end{array}
```

 - "et cetera."
Entropy (Rate) of Markov Chain: M

$$\lim_{n \to \infty} H(Z_n | Z_{n-1}, \ldots, Z_1)$$

$$= \lim_{n \to \infty} H(Z_n | Z_{n-1})$$

$$= H(Z_2 | Z_1). \quad \left[\text{corr. \# to \# bits needed to describe } Z_n \text{ given } Z_1 \ldots Z_{n-1} \right]$$

Simplifying setting: M is irreducible (path from every state to every other state) and a periodic (gcd (cycle lengths) = 1).

- Assume if so MC has a stationary distribution $\pi = \pi(M)$
 - i.e., if $Z_n \sim \pi$ then $Z_{n+1} \sim \pi$.
- Assume $Z_1 \sim \pi$.
- Theorem [Shannon]: Can compute entropy rate of Markov Chain $H(M)$ given M.

Hidden Markov Models

Specified by:
1. Markov Chain \(M \) on \(\mathbb{R} \) states = \(\Gamma \)
2. Distributions \(\{P_x\}_{x \in \Gamma} \)

Generates sequence \(X_1, \ldots, X_n \) as follows:
1. Pick \(Z_1 \sim \Pi \) (stationary prob. of \(M \))
2. Generate \(Z_i | Z_{i-1} \), according to \(M \)
3. Generate \(X_i \sim P_{Z_i} \)

Example:

![Diagram of Hidden Markov Model]

- Entropy of HMM \(M \)

\[
H(M) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} H(X_i | X_{i-1}, \ldots, X_1)
\]

- Limit exists! \(\forall n \ H(X_n | X_{n-1}, \ldots, X_1) \leq H(X_{n-1} | X_{n-2}, \ldots, X_1) \)

Next Lecture: Analysis of L-2 on HMM.