Today:

- Channel Coding
- Definitions
- Binary Symmetric Channel
- General Channels

Next few lectures: Error Correction (with "random errors")

General Channel of Communication (Memoryless)

\[X \rightarrow \square \rightarrow Y \]

- Given by \(P_{Y|X} \) given by \(P_x \times P_y \) matrix
- \(P_{Y|X}(\beta|\alpha) = P[Y = \beta | X = \alpha] \)

Non i.i.d. uses of channel
How much "information" per use?
Simple Example

$\text{BSC}(p)$ [Binary Symmetric Channel]

\[
x \rightarrow y = x \text{ w.p. } 1-p = 1-x \text{ w.p. } p
\]

"Capacity": rate at which information can be pushed through.

Formally: encoding + decoding functions E_n, D_n achieve rate R if E_n, D_n with error ϵ:

1. $E_n: \{0,1\}^R \rightarrow \mathbb{Z}_x^n$
2. $D_n: \mathbb{Z}_y^n \rightarrow \{0,1\}^R$
3. $Pr[\text{Decoding failure}] = Pr_{m \sim \text{Unit}(\{0,1\}^R)} \left[D(y) \neq m \right] = \epsilon$

Capacity of channel $P_{y|x}$

\[
R = \sup \left\{ \lim_{n \to \infty} \frac{1}{n} \sum_{m \in \{0,1\}^R} E_{E_n, D_n}(0, m) \right\}
\]
Connections to Information Theory

1. Capacity \((P_{x|y|x}) = \max_{P_x} \sum I(x; y) \)

 [operational view of Information, theorem to be proved later]

2. Information Theory gives "best" algorithm + codes!!

Today 0

\[\text{Special Case: BSC}(p) \]

Capacity = \(1 - \# h(p) \) \[P_x = \text{Bern}(\frac{1}{2}) \].

\[= H(\text{Bern}(\frac{1}{2})) - H(Y|X) \]

\[= 1 - H(\text{Bern}(p)) \]

\[= 1 - h(p). \]

Proof of 1 for BSC(p).

0. \(R \geq 1 - h(p) - \epsilon \) \(k = (R \cdot n) \)

Pick \(E_n: \Sigma_{0,1}^r \rightarrow \Sigma_{0,1}^n \) at random

\(D_n = \max \text{ likelihood decoding} \).
Lemma:

\[\Pr_{E_n, m, Y \mid E_n(m)} \left[D_n(Y) + m \right] \leq \varepsilon \]

\[\Rightarrow \exists E_n \left[\Pr_{m, Y \mid E_n(m)} \left[\cdot \right] \leq \varepsilon \right] \]

Proof: Error events

1. \[\Pr_{Y \mid X} \left[\Delta(Y, E_n(m)) \geq (p + \varepsilon) \right] \leq \exp(-\varepsilon^2 n) \]

2. \[\Pr \left[\forall \exists m' \neq m; E'_n, \Delta(E'_n(m'), Y) \leq (p + \varepsilon) n \right] \]

\[\leq 2^k \left(\frac{n}{(p + \varepsilon)n} \right) \cdot \frac{1}{2^n} \]

\[\approx 2^k \cdot 2^{-n} \cdot 2^{-n} \]

\[= 2 \exp(-\varepsilon n). \]

If \(E_1 \) or \(E_2 \) don't happen, then cheating right.
General Channel

Fix P_x.

- Pick $E_n : \{0,1\}^n \to \Omega^2_x$ by picking $E_n(m)_i$ i.i.d. $\sim P_x$ ind. for all (m,i).

- Decoding (Y)

 If there exists unique $X \in \mathbb{S}^n_x$ such that for $X = E(m)$,

 \[\Pr[X] = \frac{1}{2^{H(R)n}} \]

 \[\Pr[xy] \approx \frac{1}{2^{H(P_{xy})n}} \]

 P_{xy} is typical.

 Output m.

 Else error.
Analysis

(i) Two types of errors

(ii) \(X \) not typical, \(Y \) not typical, \((X,Y) \) not jointly typical

(iii) \((E(m'), Y) \) jointly typical, for some \(m' \) \(\neq m \).

\[\Pr[{\text{(E)}}] \to 0 \quad \text{by AEP} \]

2. \(E_2 \) ? Key + useful lemma.

Lemma: Let \(P, Q \) be distributions over \(\Sigma^* \).

\[\Pr[\Xi \text{ typical for } Q^n] \leq 2^{-D(Q||P) \cdot n} \]

In our case

\((E(m'), Y) \) drawn from \(P_x^n \times P_y^n \)

\[\Pr[(E(m'), Y) \text{ typical for } P_{xy}^n] \leq 2^{-D(P_{xy} || P_x \times P_y) \cdot n} = 2^{-I(Y; X) \cdot n} \]
\[\Rightarrow \text{Can take union bound over } 2^m \text{ } \forall m \text{'s.} \]

\[\Rightarrow \text{Rate } \geq I(x; y)! \]

Can optimize over \(P_x \)
to get

\[\text{Capacity } \geq \sup_{P_x} \left\{ I(x; y) \right\} \]

Converse Coding Theorem:

\[V_1: \text{if Pr[decoding failure]} \rightarrow 0 \text{ then } R \leq \text{Capacity} \]

\[V_2: \text{for BSC}(p): \text{if Rate } = \sup_{P_x} \left\{ I(x; y) \right\} + \epsilon \text{ then Pr[decoding failure]} \geq 1 - \exp(-n) \]

[\(V_2 \text{ much stronger quantitatively; but this being true only for BSC}(p) \).]
Proof of V1: (using Fano's Inequality)

have \(m \rightarrow X^n \rightarrow Y^n \rightarrow \hat{m} \) - a Markov chain.

1. \(I(X^n; Y^n) \leq n \cdot \sup_{p_X} \{ I(X; y) \} \)

2. \(H(m) = nR \geq H(m | \hat{m}) + I(m ; \hat{m}) \)
 \[\leq H(m | \hat{m}) + I(X^n; Y^n) \quad [DP] \]
 \[\leq H(m | \hat{m}) + nC \]

need to bound \(H(m | \hat{m}) \)

Fano:
\[H(m | \hat{m}) \leq h(Pr[m \neq \hat{m}]) + Pr[m \neq \hat{m}] \cdot nR \]
\[\leq 1 + o(nR) \]

\[\Rightarrow nR (1 - o(1)) \leq nC \]
\[R (1 - o(1)) \leq C \]
\[\Rightarrow R \leq C \quad \text{in the limit} \]

V2: Exercise / Ref.