CS 229r: IT & CS

LECTURE 22

Today:

"Entropy in Computational Complexity"

- Statistical Difference Problem (SD)
- \(SD = \overline{SD} \)

Probability Distributions in (T)CS vs. IT:

- TCS focus: One sample from distribution on large support
- IT focus: Many samples from distribution on small support

Resulting Concepts:

- IT: \(H(X) \), KL Divergence \(D(P \parallel Q) \)
- CS: \(H_\infty(X) \); Statistical distance \(S(P, Q) \).

Definition:

\[
H_\infty(X) = \min_{w \in \Omega} \log \frac{1}{\Pr[X = w]} \quad \text{vs.} \quad H(X) = \mathbb{E}_{w \in \Omega} \left[\log \frac{1}{\Pr[X = w]} \right]
\]

Very popular in "randomness extraction" ...

(Not today’s focus).
- \[S(P, Q) = \frac{1}{2} \sum_{w \in \mathcal{X}} |P(w) - Q(w)| = \max \left\{ \frac{1}{2} \sum_{x \in \mathcal{X}} |P_T(x) - Q_T(x)| \right\} \]

- Since in CS: Distributions that are not very distinguishable,
 \[S(P, Q) \to 0 \quad (\frac{1}{n^{10}}, \frac{1}{2^{2n}}, \ldots) \]

- Useful feature: \(\Delta \)-Inequality
 \[\Delta(P, Q) + \Delta(Q, R) \geq \Delta(P, R) \]
 "Indistinguishability" is "transitive."

- Computational Indist.
 \[S^c(P, Q) = \max_{T: \mathcal{X} \to \{0, 1\}} \sum_{x \in \mathcal{X}} \mathbb{E}_{P \times Q}[T(x) - T(y)] \]

Comparisons:
1. Pinsker: \(S(.) \) vs. \(D(\|) \)
2. \(H_{\infty}(X^n) = \infty \) for \(X^n \), \(\exists \bar{x} \approx_{o(1)} X^n \) with
 \[H_{\infty}(\bar{x}) = n \cdot H(X) \]
Historically:

1. Prob. Encryption \(\text{[Goldwasser-Micali]} \) \(\text{Comp. Int.} \)
2. \(\text{(GMW)} \): Graph-Non-Isomorphism \(\subseteq \) \(\text{(Statistical) Zero Knowledge} \)
 \(\downarrow \) (many years later)
3. Statistical Difference is \(\text{SZK-complete} \)
4. \(\text{SD} \approx \text{SD} \) \(\leftarrow \) This is what we'll define & prove.

- Given some ideas & steps above: (include idea of definitions).

- \(\text{[GMW]} \) \(\text{GIN1} \subseteq \text{SZK} \) (TLA-galore).

Question: How can I prove to you that two \(n \)-vertex graph are not isomorphic?

Defn: \(G_1 = (V_1, E_1) \) \(H = (W, F) \) are isomorphic if \(\exists \text{ \Pi: } V \rightarrow W \) 1-1

\[\forall (u,v) \in E \leftrightarrow (\Pi(u), \Pi(v)) \in F \]

- Proving isomorphism easy: I can send \(\Pi \) to you.
- Non-isomorphism? Can send all \(n! \) \(\Pi \)'s to you?
 - No good!
What else can be

Proof (Interactive, Zero Knowledge):

Verifiers (You)

Prover (me)

\(G_0 \overset{H}{=} G = G_0 = (\mathbb{G}, \mathcal{E}) \)

\(1_t = G_{1_t} = (\mathbb{G}, \mathcal{F}) \)

\(\vdash \)

Pick \(b \in \mathbb{R}_{0,1}^2 \)

\(\Pi : \mathbb{G} \rightarrow \mathbb{G} \) unit.

Send \(\Pi (G_0) = \overline{K} \rightarrow \Phi \)

(Challenge: Guess \(b \))

Accept if \(b = \overline{b} \).

Assertions: 0 if \(b \neq H \) I can (with \(\mathcal{O}(m^2) \) time) guess \(b \) from \(\pi K \) (isomorphic to \(G_0 \) only)

\(\Rightarrow Pr[\text{Accept}] = 1 \)

2. If \(b \neq H \) I can't do better than random guessing. Formally

\[\sum_{K \in \mathbb{K}} b = 0 \] \[\sum_{K \in \mathbb{K}} b = 0 \]

or equivalent \(I(K; b | G, H) = 0 \).

3. Verifier learns nothing except \(b \neq H \) (if \(1_t \)).

"Zero Knowledge" - No formalism here!
Question: What other statement can be proved like this.

Theorem [SV]: SD is SZK-complete.

Definition: Given boolean circuit $C : \{0,1\}^m \rightarrow \{0,1\}^n$ bits with $m, |C| = \text{poly}(n)$, we say C "represents" a sampleable distribution (also called C supported on $\{0,1\}^n$ given by $\{ C(Y) \} Y \leftarrow \text{Unif}(2^n)$ ("circuits" are "sampleable distributions").

$SD_{C,f}^c$:

$\text{CLOSE}^c = \{ (C_1, C_2) \mid S(C_1, C_2) \leq c \}$

$\text{FAR}^f = \{ (C_1, C_2) \mid S(C_1, C_2) > s \}$

Problem: Given (C_1, C_2) decide if $(C_1, C_2) \in \text{CLOSE}^c$ or $(C_1, C_2) \in \text{FAR}^f$.

Claims

1. $SD^{\frac{1}{3}, \frac{2}{3}}$ is SZK-complete. [Won't define or prove]
2. $SD^{\frac{1}{3}, \frac{2}{3}} = SD^{2^n, 1-2^{-n}}$
Hint of \[SD^{-n_k} = 1 - 2^{-n_k} \leq \text{SZK} \]

Verifier

\[C_0, C_1 \]

Pick \(b \in \{0, 1\} \) at random

\(Y \in \{0, 1\}^m \) at random

\[Y = C_b(x) \]

Prover

\[\Diamond \]

Completeness: \(S(C_0, C_1) \geq 1 - 2^{-n_k} \) \(\Rightarrow \) Prover accepted w.p. \(1 - 2^{-n_k} \)

Soundness: \(S(C_0, C_1) \leq 2^{-n_k} \) \(\Rightarrow \) Prover accepted w.p. \(\leq \frac{1}{2} + 2^{-n_k} \)

\[Z_k : \quad \Pr[b = \hat{b}] \geq 1 - 2^{-n_k} = 1 \]

\[\text{So, at least one answer; no knowledge gained.} \]

Note: if \(\text{FAR} = \text{FAR}^{2/3} \) then \(\Pr[b = \hat{b} \mid \text{FAR}] \geq \frac{2}{3} \) (some knowledge could be gained)

so amplification essential
Amplifying SD:

1. \(\text{SD}_{C, f} \leq \text{SD}_{C_k, f_k} \quad \text{"XOR REDUCTION"} \)

\((C_0, C_1) \longrightarrow (C_0, C_1) \otimes (D_0, D_1) \)

\(D_i (b_1 \ldots b_{t+1}, x_1 \ldots x_t) = (C_{b_1} (x_1), \ldots, C_{b_{t+1}} (x_{t+1}), C_0 (x_t)) \)

where \(b_{t+1} = t \oplus (\bigoplus_{j=1}^{t} b_j) \)

[so mixes odd/even \# C_0's with rest C_1's]

- makes it very hard to distinguish

Exercise: \(\mathcal{S} (D_0, D_1) = \mathcal{S} (C_0, C_1) \).

2. \(\text{SD}_{C, f} \leq \text{SD}_{C', f, 1 - 2e^{-tf/2}} \)

\(\Downarrow \quad \text{"BPP amplifier"} \)

\(\Delta \)-inequality

Putting \(\odot \) (1) + (2) + (1) together

\(\Rightarrow \quad \text{SD}_{C, f} \leq \text{SD}_{2^{-n \epsilon}, 1 - 2e^{-tf/2}} \).
Main Result for next lecture:

SD ≤ SD: [Notice surprising switch]

Main Tool:

- \(ED \uparrow (C_0, C) \) (LOW, \(H_{16}H \))

\[
\text{HIGH} = (C_0, C_t) \ \text{s.t.} \quad H(C_0) \leq H(C_1) - \Delta
\]

\[
\text{LOW} = (C_0, C_i) \ \text{s.t.} \quad H(C_0) \geq H(C_i)
\]

Task: Given \((C_0, C_i) \in \text{HIGH} \cup \text{LOW} \)
decide which.

- Main Results
 1. \(SD \leq ED \rightarrow [\text{mostly simple}] \)
 2. \(ED \leq ED \rightarrow [\text{trivial}] \)
 3. \(ED \leq SD \rightarrow [\text{next time}] \)
$SD < ED$

$\begin{align*}
(C_0, C_1) & \rightarrow (P, Q) \\
\mathcal{P} & \equiv \begin{cases}
\mathcal{P}(x, b, s) = (C_s(x), b_s) \\
\mathcal{Q}(x, b, s) = (C_s(x), b)
\end{cases}
\end{align*}$

if (C_0, C_1) - far then $C_s(x)$ reveals s

so $H(P) = V + o(1) \quad V \leq \frac{H(C_0) + H(C_1)}{2}$

$H(Q) = V + 1$

if (C_0, C_1) - close then $C_s(x)$ does not reveal s

$\Rightarrow H(P) \approx H(Q) \approx V + 1.$