1 Overview

1.1 Logistical Notes

1. **Scribing:** Reminder to sign up for scribing, and the first scribing draft is due within 24 hours of lecture.

2. **Problem Set 1:** Due Friday, February 8 at 8:00 PM. Reminder that each student has 3 late days, and may use up to 2 per problem set. Email Madhu if you plan to use late day(s).

3. **Office Hours:** Madhu will hold office hours after lectures, in MD 339. Mitali will hold office hours on Friday from 4:30 to 5:30 PM.

1.2 Outline for Today

1. Single-shot compression
2. Universal compression
3. Markovian sources

2 Single-Shot Compression

The general structure of an encoding problem in real life, rather than the theoretical definition we’ve been dealing with, revolves around a sender and receiver, both of which know of a distribution \(P = (P_1 \ldots P_m) \). The sender has an \(X \sim P \) and encodes it as \(E(X) \) using the encoding function \(E : [m] \to \{0,1\}^* \) to send to the receiver. Meanwhile, the receiver uses a decoding function \(D : \{0,1\}^* \to [m] \cup \{?\} \) to unpack the encoding. We include the ? because its possible for the decoding function to return multiple possible inputs for the same encoded output.

Thus, our goal is represented by the following:

\[
\min_{E} \left\{ \mathbb{E}_{X \sim P} [||E(X)||] \right\}
\]

Where we are trying to minimize this over all E, and this naturally leads us to consider Huffman encoding, which as it turns out can "solve" this problem optimally! In addition, we’ll cover Shannon encoding, which solves this problem in \(\leq H(X) + 1 \) bits. Recall that we’ve seen the Shannon lower bound, which asserts that the optimal encoding is \(\geq H(X) \). Thus, it follows that Huffman encoding will fall somewhere between these two.

2.1 Huffman encoding

The underlying concept of Huffman encoding is a binary tree representation of the support \(\Omega \).

Example 1. Suppose we have the following prefix-free mapping:

\[
A \to 0 \quad B \to 1011 \quad C \to 100 \quad D \to 1010 \quad E \to 11
\]
We construct a tree as follows:

```
A (0) (1)
  ↓
C (0) (1)
  ↓
B (0) D (1)
```

Note that the prefix-free property requires that no encoding is an ancestor of another. Thus, our algorithm (not really pseudocode but just to give the intuition) for Huffman encoding is as follows:

Huffman Encoding \((P_1, \ldots, P_m)\):
- sort/relabel \(P_i\) s.t. \(P_1 \geq P_2 \geq \cdots \geq P_m\)
- merge \(P_m\) and \(P_{m-1}\), giving us \(Q_1, \ldots, Q_{m-1}\), where \(Q_i = P_i\) except \(Q_{m-1} = P_{m-1} + P_m\)
- let \(E'\) be the encoding for \((Q_1, \ldots, Q_{m-1})\), then set \(E(i) = E'(i)\) except for \(E(m-1) = E'(m-1) + '0'\), and \(E(m) = E'(m-1) + '1'\)

Proof of Huffman encoding. The proof of optimality for Huffman encoding also follows a recursive pattern: WLOG assume \(P_1 \geq P_2 \geq \cdots \geq P_m\), and let \(\ell_i = |E(i)|\) for some optimal encoding, then first note that \(\ell_1 \leq \ell_2 \leq \cdots \leq \ell_m\). To see why this must be true, consider \(P_i \geq P_j\) but \(\ell_i \geq \ell_j\), in which case if we swap the encodings \(E(i)\) and \(E(j)\) then we reduce \(\sum p_i \ell_i\) by \((p_i - p_j)(\ell_i - \ell_j)\), thus contradicting the optimality of the encoding.

Here, we observe that node \(m\) must be a deepest leaf, with depth \(\ell_m\), and it must have a sibling (otherwise just move \(m\) up a level and the encoding will still be prefix-free). Thus, nodes \(m\) and \(m-1\) are siblings, meaning if we merge them, we get our recursive optimality with \(Q_1, \ldots, Q_{m-1}\) as well (if this merged version is not optimal, then neither would our original with \(P_1, \ldots, P_m\)). Thus, by induction, we can eventually formalize this sketch and prove that Huffman encoding is optimal.

2.2 Shannon encoding

Shannon asserted that, to encode \(i\), we could just use \(\lceil\log \frac{1}{p_i}\rceil = \ell_i\) bits, and further noted that:

\[
\sum p_i \leq 1 \Rightarrow \sum 2^{-\ell_i} \leq p_i \leq 1
\]

Although Shannon didn’t formulate an actual encoding strategy, you know from the problem set that an encoding function exists, thus we can just use that.

In particular, we evaluate the performance as follows:

\[
\mathbb{E}_{X \sim P}[E(X)] = \sum_i p_i \ell_i = \sum_i p_i \left\lceil \log \frac{1}{p_i} \right\rceil \leq \sum_i p_i \left(\log \frac{1}{p_i} + 1 \right) = H(X) + 1
\]

Huffman encoding is bounded above by \(H(X) + 1\), since it must be more optimal than Shannon encoding.

For Further Exploration. Is this gap of 1 tight? In particular, note that:

\[
H(X) \leq \text{Huffman} \leq \text{Shannon} \leq H(X) + 1
\]

Where does the +1 occur between each pair of terms?

It’s remarkable that there is only a tiny additive difference between the optimal and maximal encodings!
3 Universal Encoding

Back when we were building fax machines to communicate information, the first compression mechanisms used a random piece of paper to determine a distribution on which to build the encoding and compression. However, nowadays the big difference between techniques we just learned (Huffman encoding, etc.) and tools we often use (GZip, etc.) is that we don’t know the probability distribution for these compression tools.

Thus, we come to the topic of universal encoding, where we have an input of $W \in \Sigma^n$, and our task is to compress to $\{0, 1\}^*$. We’ll example the Lempel Ziv algorithm, which has empirically performed well, and later we’ll consider other algorithms for certain classes of probabilistic sources of W.

3.1 Lempel Ziv algorithm

The algorithm takes the following approach: first decompose the string W into small pieces, written as a composition $W = S_0 \circ S_1 \circ S_2 \circ \cdots \circ S_m$, where $S_0 = \lambda$ is empty. Then, for all i, we write $S_i = S_j \circ b_i$, where $j_i < i$ and $b_i \in \Sigma$, and we try to take the longest S_j possible such that $S_j \neq S_j$ for $j < i$. The general intuition is we express later strings as earlier ones plus some character b_i such that they remain unique. The encoding would thus be $E(W) = (j_1, b_1), (j_2, b_2), \ldots, (j_m, b_m)$, and if we have a lot of these j_i then that’s not good, but if we only have a few then that’s great!

Exercise 1. (Additional) Why is the “chunking” described in Lempel Ziv uniquely determined? In other words, why is there only one way to decompose the string W into these S_i?

Solution: One observation is that if c is a chunk, then every prefix of c must have been a previous chunk. We prove the above observation and the uniqueness of chunking by induction on the number of chunks so far. For the base case, the only possible first chunk is the first character, since each chunk must be a previous chunk with one extra character. For future chunks, consider the longest substring s that is equal to a previous chunk. No chunk shorter than $|s| + 1$ is legal, since all such substrings are prefixes of s and thus previous chunks. No chunk longer than $|s| + 1$ is legal, because it wouldn’t be a previous chunk plus one character. Thus, the only legal next chunk is the substring of length $|s| + 1$, and each prefix of this chunk is a previous chunk, as desired.

Example 2. Visually, a possible decomposition looks like:

$$W = 01011001101111101$$

$$= [0] [1] [01] [11] [00] [110] [111] [1101]$$

$$\Rightarrow (\lambda, 0), (\lambda, 1), (A, 1), (B, 1), (A, 0), (D, 0), (D, 1), (F, 1)$$

Here, we would ultimately encode λ, A, B, \ldots in $\sim \log n$ bits.

Warning: Small strings can possibly get longer after being compressed. It takes much longer strings for Lempel Ziv to “get going” and result in actual reductions in length.

Exercise 2. Find a prefix-free encoding of \mathbb{Z}^+ that encodes n using $\log n + O(\log \log n)$ bits.

Solution: The prefix free encoding will look like

$$|\text{bits of length}| 01 |\text{bits of } n|$$

To make the encoding decodable, the first segment will be encoded with pairs of bits. In other words, for each bit in $[\log n]$, the encoding will have two copies of that bit. Then, the “01” indicates the end of the first segment, and the length can be recovered from the bits read. Then, the next length bits are just n in binary.

This is prefix-free since otherwise one encoding is a prefix of another. However, that first encoding specifies how long the rest of the encoding after the “01” can be, contradiction.
The overall length is $2 \lceil \log n \rceil + 2 + \lceil \log n \rceil$ which is $\log n + O(\log \log n)$ bits.

We now analyze the performance of Lempel Ziv; if we consider $W = W_1, \ldots, W_n$ with $W_i \sim P_X$ i.i.d. then as $n \to \infty$, with high probability the length of compression approaches $(H(X) + o(1)) \cdot n$.

Exercise 3. (Additional) Apply Lempel Ziv to the following sequence:

$$W = 010011000111000011110000011111$$

In addition, what would you conjecture are the worst and best case strings for the effectiveness of Lempel Ziv compression?

Solution: We decompose the string as follows:

$$W = 010011000111000011110000011111$$

$$= [0] [1] [00] [11] [000] [111] [0000] [1111]$$

$$\Rightarrow (\lambda, 0), (\lambda, 1), (A, 0), (B, 1), (C, 0), (D, 1), (E, 0), (F, 1), (G, 0), (H, 1)$$

From this, we can observe that, for every length k, the more substrings S_i of that length k, the longer our resulting encoding must be, since we must send along more combinations of length k, rather than strings of length greater than k that are built off of k. Thus, we conjecture that the worst case strings are those which contain (in increasing k order) all 2^k substrings of each length k, while the best case strings are those which contain exactly one substring of each length k. You will formally prove these conjectures on the homework.

3.2 Markovian sources

We will now observe that Lempel Ziv also successfully compresses Markovian sources, which aren’t i.i.d. like what we’ve considered so far.

Definition 4 (Markov chain). A (time invariant) Markov chain is a sequence $Z_1, Z_2, \ldots, Z_n, \ldots$ such that:

1. $Z_n|Z_1 \ldots Z_{n-1} \sim Z_n|Z_{n-1}$ $\forall n$, and
2. $Z_n|Z_{n-1} \sim Z_m|Z_{m-1}$, transitions always happen with same probability distribution.

Definition 5 (k-state Markov chain). If we consider $Z_i \in \Gamma = \{1, \ldots, k\}$, then this forms a k-state Markov chain, which is given by a $k \times k$ matrix M, where $M_{ij} = \Pr[Z_2 = j|Z_1 = i]$. In addition, we will only consider Markov chains that satisfy:

1. irreducibility, meaning the chain is strongly connected, and there exists a path between every pair of vertices, and
2. aperiodicity, meaning \gcd (cycle lengths) = 1.

And in particular we know that for all chains M that satisfy these conditions, there exists a stationary distribution $\Pi : \Pi(M)$ such that if $Z_i \sim \Pi$, then $Z_{i+1} \sim \Pi$, or that in any point of time, each edge is equally likely to be traversed.

Thus, we can calculate the entropy of the chain M as:

$$H(M) \triangleq \lim_{n \to \infty} H(Z_n|Z_1 \ldots Z_{n-1})$$

This can be interpreted as, given the chain goes on forever, how much do I need to say about the current state to get the next state. Note that we can thus transform this into:

$$H(M) \triangleq \lim_{n \to \infty} H(Z_n|Z_1 \ldots Z_{n-1}) = \lim_{n \to \infty} H(Z_n|Z_{n-1}) = H(Z_2|Z_1)$$

Where Z_1 is drawn according to the stationary distribution. Note that there are some Markov chains that we can’t do anything about, particularly those where we cannot tell where we started given the current state of the chain. However, there is a nice class of models for which Lempel Ziv works well on.
Exercise 6. Given the above, find the entropy of a k-state time-invariant Markov chain given the transition matrix M and the stationary distribution Π.

Solution: Use the formula for conditional entropy.

Definition 7 (Hidden Markov Models). Suppose there exists a Markov chain Z_1, \ldots, Z_n with distributions P_{Z_i} indexed by states Z_i, then the sequence $X_1 \ldots X_n$ drawn from $X_i \sim P_{Z_i}$ is said to be distributed according to a Hidden Markov Model. The sequence $\{X_i\}$ is what’s observed, and the Markov chain $\{Z_i\}$ exists in the background, and is thus hidden.

Lempel Ziv can compress these Hidden Markov Models, which is quite impressive!