
A

A Theory of Goal-Oriented Communication

ODED GOLDREICH, Weizmann Institute of Science
BRENDAN JUBA, Harvard University and MIT CSAIL
MADHU SUDAN, Microsoft Research New England

We put forward a general theory of goal-oriented communication, where communication is not an end

in itself, but rather a means to achieving some goals of the communicating parties. Focusing on goals

provides a framework for addressing the problem of potential “misunderstanding” during communication,
where the misunderstanding arises from lack of initial agreement on what protocol and/or language is

being used in communication. In this context, “reliable communication” means overcoming any initial
misunderstanding between parties towards achieving a given goal. Despite the enormous diversity among

the goals of communication, we propose a simple model that captures all goals.

In the simplest form of communication we consider, two parties, a user and a server, attempt to commu-
nicate with each other in order to achieve some goal of the user. We show that any goal of communication

can be modeled mathematically by introducing a third party, which we call the referee, who hypothetically

monitors the conversation between the user and the server and determines whether or not the goal has
been achieved. Potential misunderstanding between the players is captured by allowing each player (the

user/server) to come from a (potentially infinite) class of players such that each player is unaware which

instantiation of the other it is talking to. We identify a main concept, which we call sensing, that allows
goals to be achieved even under misunderstanding. Informally, sensing captures the user’s ability (poten-

tially using help from the server) to simulate the referee’s assessment on whether the communication is

achieving the goal. We show that when the user can sense progress, the goal of communication can be
achieved despite initial misunderstanding. We also show that in certain settings sensing is necessary for

overcoming such initial misunderstanding.
Our results significantly extend the scope of the investigation started by Juba and Sudan (STOC 2008)

who studied the foregoing phenomenon in the case of a single specific goal. Our study shows that their main

suggestion, that misunderstanding can be detected and possibly corrected by focusing on the goal, can be
proved in full generality.

Categories and Subject Descriptors: F.0 [Theory of Computation]: General; E.4 [Coding and Informa-
tion Theory]: Formal models of communication

General Terms: Theory

Additional Key Words and Phrases: Semantic communication

ACM Reference Format:
Goldreich, O., Juba, B., and Sudan, M. 2012. A Theory of Goal-Oriented Communication J. ACM V, N, Arti-

Earlier versions of this work appeared as ECCC reports [Juba and Sudan 2008b; Goldreich et al. 2009]. An
adapted version of this work appears in [Juba 2011].
The work of O. Goldreich was partially supported by the Israel Science Foundation (grant No. 1041/08). The
work of B. Juba was supported by NSF Award CCF-0939370.
Author’s addresses: O. Goldreich, Department of Computer Science, Weizmann Institute of Science, Re-
hovot, Israel; e-mail: oded.goldreich@weizmann.ac.il; B. Juba, School of Engineering and Applied Sci-
ences, Harvard University, Room 140, 33 Oxford Street, Cambridge, Massachusetts 02138, USA; e-mail:
bjuba@alum.mit.edu; M. Sudan, Microsoft Research New England, One Memorial Drive, Cambridge, Mas-
sachusetts 02142, USA; e-mail: madhu@mit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0004-5411/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Goldreich et al.

cle A (January YYYY), 65 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
The traditional perception of the “problem of communication” in EE and CS is dom-
inated by Shannon’s highly influential work [Shannon 1948], which focuses on com-
municating data over a noisy channel and sets aside the meaning of this data. The
usual setting of information theory – for example, the setting of the theorems on
channel capacities – assumes that the communicating parties are a priori in agree-
ment on the communications protocol they are about to employ. Thus, the question
of the meaning of the intended communication is deemed irrelevant and so entirely
dismissed.1 Shannon’s decision to divorce information from its semantics and treat it
syntactically was a stroke of genius, enabling him to propose a generic quantification
of information—contrast this with how brittle and context-dependent a quantification
of meaning would be.

Still, information has no value unless it has meaning, and so the question of mean-
ing must be addressed whenever it cannot be assumed to be trivial. The meaning of
information starts to become relevant, even to the engineering problem of designing
communication systems, whenever there is diversity in the communicating parties, or
when the parties are themselves evolving over time. The epitome of such a diversity of
evolving parties lies at the heart of the Internet of Things project [Briggs et al. 2005],
which aspires to provide network connectivity among every possible object imaginable,
from consumer goods to household fixtures, including indeed objects that have yet to
even be invented. It is envisioned in particular that these networked objects should
enjoy rich interoperability so that, e.g., our cars should be capable of “looking up” an
available parking space automatically via the network. Current approaches to support
such interoperability [Uckelmann et al. 2011b] generally proceed by proposing an ex-
tensible overarching standard,2 yet it is quite difficult to envision a “one-size-fits-all”
protocol, as different Things and different applications have different requirements
regarding (at least) appropriate access ranges, power consumption, and privacy levels.
It is therefore natural to expect that the present state of affairs, in which a vast array
of independent, task-specific “intranets of things” use a variety of specialized proto-
cols and technologies [Uckelmann et al. 2011a], will continue to persist. Thus, if the
Internet of Things is to succeed, it must somehow manage the problem of potential
misunderstanding across these protocols designed by independent parties, at different
times, for different purposes.

Even if this problem will not enter daily life in its most general form for years to
come, we need not look beyond our desks to find concrete evidence of the challenges it
poses. Take, for example, the mundane “printing problem”: Here a computer attempts
to communicate with a printer, to print some image, but does not know the format used
by the printer (aka the “printer driver”). As a second example, consider the “computa-
tional (delegation) problem”: Here a weak computer (a laptop) would like to outsource
some computational task to a powerful supercomputer, but does not know the lan-
guage in which computational tasks may be described to the supercomputer. In both

1Specifically, Shannon [1948] asserts “Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual entities. These semantic aspects of
communication are irrelevant to the engineering problem.”
2These standards essentially build off the proposals for the Semantic Web [Berners-Lee et al. 2001], and in
reading them one might believe that the problem of misunderstanding has been solved by the use of shared
ontologies. And yet, interoperability at such scale, particularly the design and maintenance of sufficiently
rich shared ontologies (which tend to be brittle), is one aspect in particular of the Semantic Web project that
has yet to be convincingly demonstrated [Shadbolt et al. 2006].

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:3

examples, the bottlenecks today (empirically) seem to be not in the reliability of the
communication channel, but rather misunderstanding at the endpoints.

This leads us to consider a problem “complementary” to Shannon’s. We consider
communication in the setting where parties do not, a priori, agree on a communication
protocol (i.e., on a language). Indeed, these parties may not a priori understand each
other, and so the question of meaning arises; that is, what does each of the parties
want? what does each expect? what does each hope to achieve? and can they cooperate
in a way that benefits each of them?

The foregoing questions are rooted in the thesis that communication has a goal3 (or
that each of the communicating parties has a goal that it wishes to achieve). Thus,
following a dominant approach in twentieth century philosophy (see Section 1.4), we
associate the meaning of communication with the goal achieved by it.

1.1. Our work at a glance
Our general contribution is in suggesting a mathematical theory of goal-oriented
communication. We note that this line was initiated in prior work of Juba and Su-
dan [2008a], who considered one specific goal of communication and showed how mis-
understandings could be overcome in their setting to achieve the goal. In this work we
vastly generalize their work by addressing completely generic goals of communication.
At this level of generality it is not possible to expect misunderstandings to be overcome
in every instance. Indeed, the focus of our work is on when misunderstanding can be
overcome and how. A central contribution of this work is in identifying and highlight-
ing a concept, which we call sensing, that suffices for resolving misunderstandings (and
seems effectively necessary for such resolution). The concept of sensing thus provides
a design principle, derived from a theoretical study, for communication systems; that
is, a well-designed system should enable the user to sense whether or not progress
is made towards its goal. Following is an outline of the main conceptual steps in this
work.

The main setting we focus on involves the interaction between two entities, a user
and a server, where the user is trying to achieve some goal and the server is trying to
help the user. (The treatment of the general case, in which each of the communicating
parties may have its own goal, is postponed to Section 7; interestingly, the treament
of this general case can be reduced to the treatment of the asymmetric (user–server)
model.)

Misunderstanding in this setting is modeled by postulating that the user is selected
arbitrarily from a class of potential users, and similarly the server is selected arbi-
trarily from a class of potential servers. In principle the class may contain all the
“linguistic cousins” of a single user (or server). The user does not know which server
from the class it is talking to and vice versa, leading to potential misunderstandings
between them.

Our first main contribution is the modeling of a generic goal. Note that this is not
trivial since neither the user nor the server is fixed (and hence neither is the meaning
of the bits flowing along the communication channel between them). So how can one
model a fixed goal in the middle of all this variability? We do so by introducing a third
entity that we refer to as the referee/environment, who monitors the conversation be-
tween the user and the server by obtaining information that the user and server choose
to pass to it, and using this information determines whether or not the interaction is

3In the foregoing printing example, the goal of the computer is to have the image printed properly; while in
the computational example, the goal of the weak computer is to obtain a correct answer to the computational
task that it has delegated.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Goldreich et al.

achieving the goal.4 Thus, each such referee models a (potentially) different goal, and
conversely we postulate (as a thesis) that every goal of communication can be modeled
by such a referee, along with an appropriate choice of a class of users and servers.

The presence of this third entity also provides a simple way to model the “envi-
ronment” in which the communicating players interact. In particular, it allows us to
model any other shared resources or correlated signals that the user and server share.
In what follows, we use either of the phrases “referee” or “environment” to describe
this third entity, where the usage is supposed to reflect the role being played by the
entity (whether it is testing the communication, or just part of the modeling of the
world).

Armed with this formal definition of generic goals we proceed to analyze the con-
ditions under which misunderstandings can be detected and resolved. To this end we
propose the notion of sensing, a concept that captures the ability of the user to sense
progress towards achieving the goal. The user may be unable to sense progress due to
the unavailability of information stored in the environment (e.g., some messages from
the server), or due to its computational resources (which may be less than those of the
environment). However if (and roughly only if) the user is able to sense such progress,
or more precisely the lack of progress, then it can detect misunderstanding.

Thus, the goal specifies a (communication) problem, while the sensing function is
a key ingredient in solving such problems. Indeed, as in many other cases, detecting
trouble is a first step towards resolving it.

We then show that sensing also suffices to yield methods for correcting misunder-
standings or at least achieving the goals with respect to the class of all helpful servers,
where a server is called helpful if some user may achieve the goal when communicat-
ing with it. Specifically, one of our results asserts that if the user can sense whether it
is making progress towards the desired goal (when communicating with any server),
then it can achieve the goal when communicating with an arbitrary (unknown to the
user!) server as long as this server is helpful at all (i.e., may assist some other user).
Thus, the fact that a server is helpful to somebody implies that it can also help us (al-
though we may not know a priori which server we are trying to use). This is achieved
by using a “universal strategy” (i.e., one that works whenever some other strategy
works). For example, if a printer can be used by some machine, which uses a specific
format, then we can use it too (although we may not know a priori which format the
printer expects).5

Our universal strategy, which is based on sensing, enumerates all possible “interpre-
tations” of what the server may be doing, and rules out incorrect interpretations (by
using sensing to detect misunderstandings).6 Hence, our solution is essentially just
“try and check” (e.g., in the printer case, we try all possible formats and rely on the
ability to check whether the printer responds at all and what it prints). Indeed, this
confirms a very natural and often used human paradigm.

4Note that since the referee itself is fixed, there is no issue of misunderstanding with respect to communi-
cating with it.
5We choose to use printing as a running example in the following text due to its simplicity and familiarity.
In particular, in addition to permitting a formalization that is sufficiently simple to enable it to illustrate
the interpretation of our formal framework, it naturally illustrates how a powerful “user” may nevertheless
seek the aid of a weak “server” due to its privileged abilities with respect to their shared environment. We
also expect that the visceral frustration of attempting to configure a printer with an idiosyncratic interface
is familiar evidence of the inadequacy of the existing approaches to most readers.
6The use of enumeration and other similarities between this part of our work to “Inductive Inference” or
work in AI, notably Hutter’s “Universal AI” [Hutter 2004], has confused some readers into believing the
problems tackled are the same. We stress that this is a similarity in solutions, and not in the problem that
we are hoping to tackle. For further discussion, see Section 1.4.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:5

One may argue that the “try and check” paradigm is straightforward and that so is
the aforementioned enumeration. Our point, however, is that once one abstracts the
concept of sensing, tools (possibly several tools) become available to tackle the problem
of resolving misunderstanding towards achieving given goals. Indeed, a straightfor-
ward enumeration is one tool, and in general (as we show) one may not do any better,
but in some cases more efficient solutions may be possible.

We also prove that in some settings sensing is a necessary condition for the existence
of universal strategies. Specifically, this is the case in the finite executions model (aka
one-shot goals), but not in the case of infinite executions.

We stress the generality of the foregoing statements (which go far beyond the “com-
putational goals” considered by Juba and Sudan [2008a]; see discussion in Section 1.3).

1.2. A second look at the problem and our results
1.2.1. The problem. On top of the intellectual interest in definitions and results regard-

ing general concepts such as the “meaning of communication” and goal-oriented col-
laborations, we wish to highlight the potential relevance of the theory of goal-oriented
communication to computer practice. It is an obvious fact that modern computers com-
municate incessantly. It is also a fact that the protocols for communication, as well
as the parties they are communicating with, are extremely diverse and furthermore
are perpetually evolving. The principles, protocols, and assumptions regarding this re-
ality of diverse and evolving communicating-computers are currently determined on
a completely ad-hoc basis. This work attempts to provide a theoretical framework for
addressing this reality.

Our focus on the two-party setting, especially the user-server setting, is not a major
restriction. It captures most common forms of communication. In a variety of settings,
users are trying to obtain various services from designated servers (e.g., printing on
printers, obtaining drivers, visiting web-servers, etc). Furthermore, the user-server
setting captures the essence of misunderstanding. Indeed, in all the foregoing exam-
ples, the users are interacting with servers without having full understanding of the
functionality of the servers. The users may be humans or computers, and the same
applies to the servers. Either way, in many cases, the user does not know the server
well, and consequently each party may send messages that the other party does not
understand or, possibly worse, misunderstands.

Our model focuses on the fact that in all such situations the user has some goal and
wishes to achieve it. We view the server as just put there to help users. Still the issue
at hand is that the server may not understand all (or most) users, and the individual
users don’t necessarily know how to communicate with the server. A theory that tells
us under what conditions this initial lack of understanding can be overcome, how, and
at what expense, is thus of interest.

1.2.2. On the nature of our results. We readily admit that we do not present solutions
to all communication problems. In fact, our framework is so rich that it also includes
goals that cannot be achieved even when the user communicates with a server such
that they perfectly understand one another. Needless to say, our focus is on goals that
are achievable in such a case (i.e., when the user is helped by a suitable server), and
we ask whether such goals can also be achieved in the absence of initial mutual un-
derstanding. Indeed, our results address the question of when the gap between initial
mutual understanding and the lack of it can be bridged, and how. The “when” part
is addressed by providing sufficient and necessary conditions, whereas the “how” part
refers to the presentation of design principles.

For example, the aforementioned result asserting that sensing allows for bridging
the gap between initial mutual understanding and the lack of it (aka “universal user

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Goldreich et al.

strategies”) provides both a sufficient condition and a design principle. That is, this
result is a strong incentive for designers of communication protocols to keep sensing
in mind (i.e., provide mechanisms by which the user can sense progress). Additional
examples appear in Section 1.2.4.

1.2.3. Two disclaimers (or rather clarifications). We stress that our framework does not pre-
scribe any particular goal over others, or any particular measure of success over others.
There seems to be enough diversity in practice to suggest that any such prescriptions
will be too restrictive and will simply be ignored. Instead we focus on creating a defini-
tional framework that encompasses as broad a class of goals as possible. For instance,
consider a setting where a user wishes to print a sequence of pages on a printer. It may
be happy if it manages to print all of them perfectly correctly, or may be more flexible
and be happy if they all print correctly after a few (fixed number of) initial mistakes,
or even if mistakes occur only with small constant probability. Our study allows each
one of these goals to be captured formally, thereby letting the designers choose their
preferred goal.

We do not recommend actually implementing the solutions we provide. Our solutions
are to be thought of as feasibility results and as first steps in a study of conditions
under which initial lack of understanding can be overcome, and where the “expense”
of overcoming the lack of understanding can even be quantified.

1.2.4. Confirming various practices and other perspectives. Our results confirm a number of
common beliefs and practices. One example, which was already mentioned above, is
the practice of acting before reaching a full and/or perfectly reliable understanding of
the situation. Indeed, if we are to wait without actions until reaching certainty, then
we will never achieve any progress. This common wisdom is reflected in the design of
the universal strategy that just acts based on its current hypothesis and changes the
hypothesis once it sees evidence against it. Such false hypotheses cause only a bounded
amount of damage, whereas waiting for certainty would have resulted in waiting for-
ever and making no progress at all. Indeed, humans act as universal users, and com-
puters may be designed to do the same.

The aforementioned universal users rely on sensing (i.e., the ability to sense progress
towards our goals). Indeed, this work confirms the benefit in being able to obtain feed-
back on the effect of our actions. In particular, intelligible feedback from the environ-
ment about the progress we are making towards achieving our goal gives rise to a
trivial sensing process, which in turn yields a universal user strategy.

This work also offers a perspective on the notion of language translation, which may
be viewed as a syntactic way of overcoming misunderstandings. Specifically, we view
languages as arbitrary sets of strings and translators (or interpreters) as efficiently
computable and invertible functions mapping one language to another. Now, consider
such a function f , a user strategy U and a server S, and let Uf be the strategy that
applies f to each outgoing message determined by U and applies f−1 to each incoming
message (before feeding it to U). Then, if Uf achieves the goal G when communicating
with the server S, then we may say that f is a good translator (or interpreter) for U
with respect to interacting with S towards achieving the goal G.

By distinguishing the aspects of the model system that influence the referee’s ver-
dict, our model also presents a natural taxonomy of various kinds of goals. For example,
if the referee’s verdict only depends on the actions of the server, then we describe such
a goal as “control-oriented,” since the user must control the server’s actions to achieve
such a goal. Similarly, if the referee’s verdict only depends on messages it exchanges
with the user (and, for example, the server may have no means to interact directly
with the environment), then we refer to such a goal as an “intellectual goal.” In such

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:7

a case, although the server may aid the user in helping it compute an appropriate
message, a sufficiently powerful user could succeed without communicating with the
server. This stands in contrast to “information gathering goals,” where the user must
send an appropriate message to the referee that is not determined by the user-referee
communication, but rather depends on the server’s view of the environment. This list is
not exhaustive, but rather meant to give a taste of the variety of goals and distinctions
that our model can capture.

Turning back to our results, we mention that a couple of them confirm the benefit in
being able to reset the server. Indeed, resetting the server offers a fast way of recov-
ering from damage caused by incompatible prior communication, since it guarantees
that the damage is confined to the past (rather than being propagated to the future).

Another result confirms the value of “exploration,” which in our case refers to invok-
ing the server on “instances” (i.e., possible system configurations) that we don’t really
need to handle just in order to sense whether the current communication strategy be-
ing employed by us is adequate. The advantage in trying such instances is that they
can be picked to be very small, and hence cause a negligible amount of overhead (of
all types). However, if the communication strategy being employed is inadequate, then
this is due to some fixed instance, and if the actual instances are very large in com-
parison to it then we may gain by trying to find this small instance and rule out the
current strategy at a lower cost than by using the actual instances.

1.2.5. Subsequent work. Here, we point to some subsequent work that attempts to take
the framework introduced in this work further. While the focus in the current work is
on getting some universal user and not necessarily the most efficient one in a given
context, Juba and Sudan [2011] show that the definitions can be adapted to incor-
porate models of user’s and server’s beliefs about each other and thereby get more
efficient performance from the user when its beliefs are compatible with those of the
server. In another direction, Juba and Vempala [2011] show that when the goals (and
users) are sufficiently simple, algorithms for on-line learning can be plugged in to our
framework as an efficient substitute for our enumerations: the feedback provided by
user-sensing in such simple cases corresponds precisely to a standard model of feed-
back in learning theory, and the class of potential users corresponds to the represen-
tations learned by the algorithm. These works further illustrate the benefit of our
framework that decomposes the problem of overcoming misunderstanding into two
parts – obtaining feedback and updating a strategy on the basis of that feedback – and
handles the individual components on their own; these works specifically demonstrate
that, furthermore, it may be feasible to implement the individual components using
approaches that differ from the specific schemes suggested in the current work that
may provide improvements under various special conditions.

Similarly, while the current work focuses on mostly abstract problems, the frame-
work can be adapted to some concrete settings. As an example, Juba [2011, Chap. 9]
illustrates such an adaptation, modeling a hypothetical case of computers adapting to
changes in the internet protocol, as opposed to having to be re-programmed to con-
form to such changes. In terms of the framework proposed by our work, the feedback
is provided by existing features of higher level protocols originally intended to provide
security and reliability, whereas the strategy is selected by another standard kind of
learning algorithm.

Finally, one of the important aspects of the model introduced in our work is that the
user and server do not have precise information about each other, but only know that
they come from some large set. This aspect introduces a new twist to classical quests
in information theory and allows it to model a broader collection of communication
phenomena. For example, Juba, Kalai, Khanna, and Sudan [2011] look at the problem

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Goldreich et al.

of compression in such settings, and suggest that the uncertainty of the user and server
about each other leads to many phenomena seen in natural languages and natural
communication (e.g., redundancy and ambiguity). Indeed we hope that goal-oriented
communication, in the presence of misunderstanding can serve as a useful framework
even more generally to model and understand natural communication.

1.3. Relation to related works of Juba and Sudan [2008a; 2008b]
The current work greatly extends the scope of the research direction initiated by Juba
and Sudan [2008a]. For concretness we review their work here (in our language) and
compare the conclusions.

In [Juba and Sudan 2008a] the authors study the specific case of (“one shot”) compu-
tational goals. Such a goal is specified by a decision problemD such that the user’s goal
is to decide D on arbitrary instances (which may be viewed as selected by the environ-
ment). The user, who cannot solve the problem D on its own, seeks help from a power-
ful server that can solve D, but the user and server may not understand one another.
Juba and Sudan showed that, for any D ∈ PSPACE, this initial misunderstanding
can be overcome (provided that the server is helpful and can solve PSPACE-complete
problems), and that this is not possible if D 6∈ PSPACE.

Specific criticisms of their work included concern that such “computational goals” do
not capture all goals, and that requiring the server to use a PSPACE-complete strat-
egy severely limit the applicability of the result. In this work we address all these crit-
icisms. Firstly, our thesis is that no goals of communication are excluded by our frame-
work. Secondly, our results and techniques do not require that the user and server
have vastly different computational resources (as in case of BPP versus PSPACE);
the server may even have less computing power than the user, and the gain in in-
teracting with the server may stem from the server having a different interface with
the environment. Indeed, as long as the user has something to gain from the server,
either in the form of knowledge or in the form of changes to the environment that
the user cannot effect on its own, the user can overcome misunderstanding so as to
achieve the desired effects (provided that the user can sense the achievement of these
effects). Thus, overcoming initial misunderstanding via interaction and sensing is pos-
sible regardless of the relative computational power of the user and the server—in fact,
without any reference to it.

In light of the foregoing, we view [Juba and Sudan 2008a] as initiating and heralding
the theory developed in the current work, but doing so in the specific setting of (one-
shot) computational goals. The current work subsumes [Juba and Sudan 2008a], and
we view the current paper as (subsuming) a journal version of that work.

Turning to [Juba and Sudan 2008b], we proclaim it to be an early version of the
current work.7 However, these versions differ significantly in technical aspects. The
bottom-line is that the current exposition subsumes [Juba and Sudan 2008b], while
introducing a natural formalization that is both more expressive and more transparent
than the one used in [Juba and Sudan 2008b]. The improvement is due to two main
definitional ingredients that are introduced in the current version:

(1) The introduction of a third party (i.e., the referee/environment) for modeling
goals. The use of this third party allows a much more transparent and clear formu-
lation of various goals of communication. This is also beneficial in the special case of
one-shot goals.

(2) The introduction of infinite goals. In contrast, the exposition in [Juba and Sudan
2008b] is restricted to one-shot goals (a.k.a “finite” goals) and thus associates termi-

7The only “publication” of [Juba and Sudan 2008b] is as an ECCC report.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:9

nation with achieving the goal. Here we also consider infinite goals (including multi-
session goals) and decouple achieving the goal from the simultaneous awareness of
the user of progress on its goal. This allows the user to take risks – that is, make as-
sumptions regarding the world (including the server) that may prove wrong (and be
corrected in the future) – and benefit in the meanwhile rather than waiting to a point,
which may never occur, in which it may act without risk.

The new framework raises natural question that are less apparent in the formulation
of [Juba and Sudan 2008b]. In fact, the current version contains many results that did
not appear in [Juba and Sudan 2008b].

1.4. Relationship to works in other fields
Given the general scope of our investigation of goal-oriented communication, it is
hardly surprising that similar questions were studied in other fields. Before reviewing
some of these studies, we note that the surprising fact is that these types of questions
were not studied before (i.e., before [Juba and Sudan 2008a]) in computer science. We
attribute this phenomenon to the immense influence of Shannon’s prior study of com-
munication [Shannon 1948]. As stated earlier, the semantics (or meaning) of commu-
nication was irrelevant to the problem Shannon studied. Indeed at the time, ignoring
the problem of semantics was perhaps the most appropriate choice, given the much
larger problem of (lack of) reliability of the communication channel. In the subsequent
years, the resulting research has addressed this problem adequately enough that the
“lesser” problem of semantics of information now seems deserving of study and forms
the core of the problem that we address.

Related approaches in Philosophy. In the 1920s, various philosophers independently
concluded that communication should be regarded as a means to an end, and that the
“meaning” of the communication should be taken as no more and no less than the
ends achieved via communication. For example, Dewey stated such a view in 1925,
and in a later revision of his work [Dewey 1929] observed that a similar view had
been independently expressed some years earlier in an essay by Malinowski [1923].
Subsequently, such views were adopted by Wittgenstein, and played a central role in
some of the most influential work in philosophy of the twentieth century [Wittgenstein
1958; 2001].8

In these works, Wittgenstein introduced his views of communication by means of
“language games,” scenarios of limited scope in which the utterances serve some def-
inite purpose. For example, one language game he considered featured a primitive
language used by a builder and his assistant, where the builder calls out, e.g., “brick!”
or “slab!” and the assistant brings the corresponding object. Among Wittgenstein’s pur-
poses in introducing these language games was to illustrate that the consideration of
words outside the contexts in which they are used in (ordinary) speech is meaningless.
Wittgenstein thus considered the meaning of language to be given by the class of all
such language games that occur in practice—by the vast array of situations in which
language is used.9 Our model of goal-oriented communication resembles these lan-

8By and large, work in Linguistics or Semiotics, though influenced by these views, has too narrow a scope
to be of relevance to us. Specifically, these fields assume communication that is structured (as terms in a
grammar) and a human conceptual scheme, whereas we make no prior assumptions about the syntax of the
communication nor about the conceptual schemes employed by the communicating parties. In other words,
our focus is on the effect of communication rather than on the “language structures” or symbols used.
9A linguist would say that we, along with Wittgenstein, are actually interested in the pragmatics of lan-
guage as opposed to its semantics, the former concerning the usage in practice, and the latter concerning the
instance-independent sense of words. Wittgenstein’s position is effectively that there is no sense in “seman-
tics” beyond pragmatics; our situation is somewhat different, as we are not concerned with human language

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Goldreich et al.

guage games. In particular, we likewise consider the meaning of communication (“in
general”) in terms of the class of all possible goals for communication, and in any given
instance we wish to discuss, we will isolate a single (formal) goal for communication of
limited scope, precisely analogous to Wittgenstein’s use of single language games.10

We note, however, that Wittgenstein’s reference to these language games is mainly
descriptive and illustrative (primarily by examples).11 Our contribution is thus in pro-
viding a clear and rigorous definition of goal-oriented communication that is suitable
as a basis for study of various qualitative and quantitative questions that arise natu-
rally. Indeed, using this formalism, one may ask when and to what extent meaningful
(i.e., goal-oriented) communication is possible. Moreover, our formalism incorporates
the computational aspects of communication, which both permits us to formulate com-
putational goals for communication and moreover permits us to consider the computa-
tional feasibility of various schemes for communication.

Related work in AI. It is not surprising that a model of goal-oriented, computa-
tionally limited agents has also been considered in AI. In particular, the Asymptotic
Bounded Optimal Agents, introduced by Russell and Subramanian [1995], bear some
similarity to the universal communicators we consider here. The similarity to our work
is merely in the attempt to capture the notion of a goal and in the related definitions
of “optimal” achievement of goals, while the crucial difference is that they only con-
sider a single player: in their work the goal is achieved by a user (called an agent) that
acts directly on the environment and obtains no help from a server (with whom it may
need to communicate, while establishing an adequate level of mutual understanding)
and so no issues analogous to incompatibilities with the server ever arise. Indeed, the
question of the meaning of communication (i.e., understanding and misunderstanding)
does not arise in their studies.12

Our universal communicators are also similar to the universal agents considered by
Hutter [2004]. Like Russell and Subramanian, Hutter considers a single agent that
interacts with the environment, and so there is no parallel to our interest in the com-

per se, as stressed in Footnote 8. Rather, in the situations we wish to consider, there is no question that the
linguist’s notion of pragmatics – the overall functioning of the system – is the important thing.
10Another point where Wittgenstein’s perspective agrees with our work, pointed out to us by an anonymous
reviewer, is that our universal users may be said to not be “groping around for the right language” while they
enumerate algorithms, but rather that this enumeration is simply part of the “language” of our universal
users. Our framework supports this view in the sense that we are satisfied with such user strategies—as,
after all, they achieve the given goal, and that is all that is significant to us.
11Indeed, Wittgenstein did not provide a generic abstract formalization of language games – for his pur-
poses, it was enough to only consider simple examples, and indeed part of his purpose was to discredit the
very practice of philosophers substituting formal definitions for the terms of everyday language. (We are safe
as our interest is in the mathematics of a system, not the language used to describe and/or motivate it.) The
closest he comes to giving definitions of language games is on p. 81 of [Wittgenstein 1958] and in Remarks 2–
7 of [Wittgenstein 2001] (cf. also Remarks 23 and 130): He defines a language game as a complete system of
(human) communication, i.e., one that could be taken as a primitive language. Remark 23 lists examples of
activities where language is used, and asserts that there is a language game corresponding to each of these
activities (and this makes it clear that each goal of communication we consider corresponds to a language
game); Remark 130 clarifies that his purpose in considering language games is to obtain idealized models of
language usage, somewhat akin to physics problems involving frictionless surfaces.
12Indeed, the “task-environments” of Russell and Subramanian are related to our notion of goals, though
they use real-valued utilities instead of our Boolean-valued predicates reflecting success. But the crucial
difference is that while Russell and Subramanian consider a goal-interested agent interacting with an en-
vironment, these interactions are actually actions, and communication per se (let alone its meaning) is not
a major concern. By contrast, in our model there are two entities, a user and a server, and we typically
consider goals where (intelligible) communication between these entities is essential for achieving the goal.
Even in the context of modeling goals for a solitary agent, there are significant differences in the formalism,
but these are minor in comparison to the above.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:11

munication with the server. In addition, Hutter’s results are obtained in a control-
theoretic, reinforcement learning setting, that is, a model in which the environment is
assumed to provide the value of the agent’s actions explicitly as feedback. Although we
sometimes consider such settings, in general we assume that the user needs to decide
for itself whether or not communication is successful.

1.5. Organization
Although we provided already a brief overview of this work (see Section 1.1), we chose
to provide yet another overview in Section 2. This overview is more detailed and we
hope it provides a more accurate sense of the contents of our work.

The core of our work is presented in Sections 3 and 4, which contain our main defini-
tional treatment and our main results (as well as some ramifications). The definitional
treatment evolves around the notion of a goal, and focuses on achievable goals; it in-
cludes the introduction of the notions of sensing, helpful servers, and universal users.
In addition, various universality theorems are proved and their inherent limitations
are investigated.

Additional extensions appear in Sections 5, 6, and 7. In particular, Section 5 intro-
duces various types of goals, servers, and notions of success that may be of interest.
Section 6 reviews the setting of one-shot goals, which is the framework used in [Juba
and Sudan 2008a; 2008b]. (We comment that a more extensive treatment of this setting
appears in [Juba 2011].) Finally, in Section 7, we consider the symmetric model, where
each party may have a goal of its own (which generalizes the asymmetric user-server
model used throughout the rest of this work).

2. OVERVIEW
In this section we provide a high-level overview of the main contents of our work. We
try to avoid any technical details, and hope that the result will be sufficiently clear
without them. We warn, however, that the actual treatment has to deal with various
technical difficulties and subtleties, which we pushed under the carpet in the current
section.

2.1. The general framework: notions and results
In this section we overview the general conceptual framework of our work and the type
of results we obtain. The corresponding detailed technical treatment can be found in
Sections 3 and 4.

The basic setting. In the basic setting, we model goal-oriented communication be-
tween two entities, by considering three entities. We describe these entities below, but
first we note that for our purpose an entity is mathematically a (possibly randomized,
or non-deterministic) function from the current state and current input signals (com-
ing from other entities) to a new state and new output signals. The state as well as the
signals are defined to come from a discrete, but possibly countably infinite set.

Our starting entity is ourselves, that is, users. Users wish to affect the environment
in a certain way or obtain something from the environment, making this environment
our second entity. To achieve the desired effect on (or information from) the environ-
ment, we may need help from somebody else, called a server. Thus, the definition of a
goal involves three entities: a user, a server, and the environment (or the world).

The communication between the user (resp., server) and the environment reflects
actions or feedback that the user (resp., server) can directly perform in the environ-
ment or obtain from it. The difference between the action and feedback capacities of
the user and server with respect to the environment is the reason that the user may
want to get help from the server, and towards this end these two parties must commu-

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Goldreich et al.

nicate (and understand one another). Indeed, the communication between the user and
the server is the focus of our study. This communication carries (symbolic) text that
reflects control commands and/or information, and the purpose of this communication
is to coordinate some effect and/or obtain some information on/from the environment.
Since the user–server communication is symbolic in nature, the question of its mean-
ing and intelligibility (w.r.t the goal at hand) arises.

Jumping ahead, we mention that the problem we face (regarding the communication
between the user and the server) is that the user and server do not know one another
and may not understand each other’s language, where a language may mean either
as a natural language or a “computer language” that specifies actions according to
a predetermined formal protocol (or system). From our point of view (as users), the
server is one of several possible servers; that is, it is selected arbitrarily in a class of
possible servers, where each server in the class is potentially helpful but may use a
different language. Thus, in order to benefit from interacting with the server, we must
(get to) know its language. We shall return to these issues later on.

A general notion of a goal. The notion of a goal refers to the way we (the users)
wish to affect the environment and/or to the information we wish to obtain from it.
Without loss of generality, we can incorporate the information that the user obtains in
the state of the environment (i.e., the environment may record that certain informa-
tion was communicated to the user and the user can communicate to the environment
whatever it has inferred, possibly from communication with the server). Thus, we for-
malize the notion of a goal by focusing on the evolution of (the state of) the environment,
which may be viewed as an execution of the user–server–environment system. The goal
is captured by two mathematical objects: The first is a Boolean predicate that deter-
mines if an infinite evolution of the states of the environment satisfies the goal. The
second object captures all that is known (or postulated) about the operation of the en-
vironment; that is, the way that the environment reacts to various actions of the user
and/or server. (Recall that these actions and reactions are modeled as communication
between the user/server and the environment.)

We stress that the environment may also model other processes that are executed by
the party that invokes the user and/or server strategies. Indeed, such processes may
affect our goals, but they are external to the (user) strategy that we employ in order
to achieve the current goal, and therefore we view them as part of the environment.
Thus, the notion of an environment does not necessarily reflect an external physical
environment (although it may indeed incorporate one), but rather captures all that is
external to the strategies that we employ towards achieving our goal. (The same also
holds with respect to the server.)

As usual, it is instructive to consider a couple of examples. The first example refers
to using a printer; that is, our goal is to print some document using a printer, which
is viewed as a server. In this case, we model the document that we wish to print as a
message coming from the environment (since indeed the documents we wish to print
come from some other process that we are involved in), and the printed document is
modeled as a message of the server to the environment. Indeed, the “printing goal” is
an archetypical case of an effect we wish to have on the environment, where this effect
can be performed by the server. In contrast, there are goals that are centered at obtain-
ing information from the environment. Consider, for example, a web-server provided
weather forecast, and our goal of deciding whether or not to take an umbrella. Note
that in this case, our decision is modeled by a message that the user sends the envi-
ronment, specifying whether or not it decided to take an umbrella. In both examples,
we need to communicate with the server in order to achieve our goal, and thus we need
to understand its language (at least at a level that suffices for that communication).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:13

At this point we note that our actual modeling is not confined to a single perfor-
mance of such a printing job or a weather-based decision, but rather allows to model
an infinite sequence of such jobs. This modeling reflects the fact that we are actu-
ally interested in multiple instances of the same type, and that we may be willing to
tolerate failure on few of these instances. Indeed, a natural class of goals consists of
“multi-session goals” that correspond to an infinite sequence of similar sub-goals.

Achievable goals and user–server communication. A goal is achievable if there exists
a user strategy that achieves it (i.e., yields a successful execution with probability 1)
when interacting with a suitable server. In trivial cases, where the user can achieve the
goal without even communicating with the server, any server will do. But if the server’s
help is required, then the question of whether the user and server understand one
another arises. Such an understanding is required if the user relies on the server for
either affecting the environment or obtaining some information from the environment.
For example, in the printing goal, if the user wishes to print some image, then it must
communicate the image to the printer in an adequate format. In the weather goal, if
the user wishes to obtain a weather forecast, then it must understand the language
used by the web-server.

Helpful servers. As stated already, our focus is on situations in which the user in-
teracts with a server that is selected arbitrarily among a class of possible servers. The
user is only guaranteed that each of these servers is helpful in the sense that when
using an adequate strategy (e.g., the right file format in the case of the printing goal
or the right language in the case of the web-server) the user may achieve the goal (via
communication with the server).

Access to a helpful server does not suffice – it is only a necessary requirement: we
(as users) need to be able to effectively communicate with this server, which means
communicating in a way that the server understands what we say and/or we under-
stand the server’s answers. A key point here is that the user is only guaranteed access
to some helpful server, whereas the class of helpful servers contains a large variety of
servers, which use different communication languages (or formats or protocols). Not
knowing a priori with which server it communicates, the user has to cope with the
communication problem that is at the core of the current work: how to conduct mean-
ingful communication with alien (to it) entities. In this case, a good idea for the user is
to try some strategy, and see what happens.

Sensing. Trying our luck seems like a good idea provided that we (i.e., the users) can
sense whether our choice is a good one, i.e., if we can sense whether our current strat-
egy leads to progress towards achieving our goal. Formally, a sensing function is just
a Boolean predicate computable by the user. Loosely speaking, this sensing function
is “safe” if whenever the execution leads to no progress, the sensing function evalu-
ates to 0 and the user obtains a negative indication. (We also allow sensing functions
that have some delay built into them and only detect lack of progress after some time.)
The complementary notion is “viability,” which means that some strategy always ob-
tains a positive indication when interacting with a given server. Indeed, if the sensing
process is both safe and viable for the selected strategy, then the user achieves the
goal when interacting with the given server. Furthermore, when interacting with a
different server that causes the user to fail (in achieving the goal), the user senses this
misfortune after a finite amount of time.

Universal user strategies. A strategy is called universal with respect to a given goal
if it can overcome the foregoing communication problem with respect to that goal.
That is, this strategy achieves the goal when communicating with an arbitrary helpful
server. In other words, if some user (strategy) achieves the goal when communicating

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Goldreich et al.

with the given server, then the universal user (strategy) also achieves the goal when
communicating with this server. Thus, a universal user strategy is able to conduct
meaningful communication with any helpful server, where the communication is called
meaningful (with respect to a given goal) if it allows the user to achieve the goal.

The design of good (i.e., safe and viable) sensing processes is the key to the design
of universal user strategies. Specifically, having access to a helpful server and employ-
ing a “sufficiently good” sensing process allows the user to be universal. Actually, we
need a combination of the helpfulness and viability condition: The combined condition
requires that, for every helpful server, there exists a user that employs a safe sensing
process and achieves the goal when interacting with this server and while obtaining
positive indication (of success) all along. We say that this server satisfies enhanced
helpfulness.

THEOREM 2.1. (main result, loosely stated): Let G be a goal and suppose that S a
class of servers that are enhancedly helpful with respect to G. Then, there exists a user
strategy U that is universal with respect to the server class S and the goal G; that is, the
strategy U achieves the goal when interacting with any server in S.

Note that the theorem holds trivially when S contains a single server, but our focus
is on the case that S contains numerous different servers that are all (enhancedly)
helpful. In any such case, we obtain a user strategy that achieves the goal no matter
with which of these servers it interacts.

Essentially, Theorem 2.1 is proved by showing that having access to a helpful server
and employing a good sensing process allows the user to try all possible communication
strategies and abandon each such strategy as soon as it senses that this strategy leads
to no progress. The amount of damage caused by bad strategies is proportional to the
quality of the sensing process as well as to the index of the adequate strategy in the
enumeration of all possible strategies.

The last assertion implies that it is indeed good practice to use an enumeration (of
possible communication strategies) that reflects the user’s a priori beliefs regarding
the server. For example, if the user is quite sure that the server uses a specific com-
munication format, then it better place the corresponding communication strategy as
first in this enumeration. In this case, if the user’s guess is correct, then it suffers no
damage and/or incurs no overhead, and otherwise it still achieves the goal (but at the
cost of limited damage and/or overhead). Thus, using the universal strategy may be
viewed as a safeguard for the case that the user’s beliefs are wrong.13

The reader may be disappointed by the fact that the universal strategy just tries all
possible user strategies and criticize the overhead (in terms of damage and/or delay)
caused by this approach. The answer to these sentiments is three-fold.

(1) Theorem 2.1 is merely a first step in a new direction. It establishes a general
feasibility result, and opens the door to further study (see the third item).

(2) The overhead of Theorem 2.1 is actually the best possible within the general
framework in which it is stated. Specifically, one of our secondary results is a proof
that for a natural class of servers no universal user strategy can have a significantly
smaller overhead than the one offered by Theorem 2.1.

(3) In light of the previous two items, Theorem 2.1 calls for future study of the pos-
sibility of improvement in a variety of natural special cases. Specifically, we conjecture
that there exists natural classes of servers for which universality holds with overhead

13A model of such “beliefs” was formalized and investigated in subsequent work by Juba and Sudan [2011].

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:15

that is proportional to the logarithm of the index of the actual server (rather than to
the index itself).14

We note that we also establish refined versions of Theorem 2.1 in which the overhead
(i.e., amount of damage or delay) is tightly related to the quality of the sensing process.

We stress that Theorem 2.1 applies to any class of (enhancedly) helpful servers and
not only to the class of all (enhancedly) helpful servers. We consider this point impor-
tant. On the one hand, the wider the class of servers for which universality holds, the
better. But, on the other hand, generality comes with a cost, while well-motivated re-
strictions of the class of the helpful servers may offer better quantitative results (i.e.,
lower overhead and/or more efficient procedures).

2.2. Ramifications
Our general framework and basic ideas facilitate numerous ramifications, some of
which are explored in Sections 3 and 4. These ramifications include several variants
of the basic universality result, the identification of numerous special cases and their
initial study, and proofs of the inherent limitations on the ability to achieve certain
goals. Some more substantial extensions, discussed below, are considered in Sections 5
and 6.

The effect of size. The foregoing discussions made no reference to the size of the
“instances” (i.e., system configurations) that arise in an execution. However, a more
refined study may seek to allow various quantities (e.g., complexities, delays, number
of errors) to depend on the size of the instances at hand. Our basic treatment in Sec-
tions 3 and 4 supports such a possibility, but (for sake of simplicity) this treatment
postulates that the size of instances is fixed throughout the execution. The general
case of varying sizes is treated in Section 5.1.

Resettable servers. One natural special case of servers that we consider is the class
of servers that can be reset by the user. In the context of solving computational prob-
lems, we note that such servers correspond to memoryless programs (and so sensing
functions with respect to them correspond to program checkers [Blum and Kannan
1989]), whereas general servers correspond to potentially cheating provers in inter-
active proof systems [Goldwasser et al. 1989]. Given the widely-believed separation
between the power of these two models, our results, described in Section 5.3, confirm
the benefit in being able to reset the server.

One-shot goals. The foregoing discussions refer to reactive systems and to goals that
are defined in terms of infinite executions. In terms of the natural special case of multi-
session goals, this means an infinite number of (bounded-length) sessions and our def-
initions allow ignoring a finite number of them. In contrast, one may be interested
in a single (bounded-length) session, which means that achieving the goal requires
full awareness of success (before termination). We call such goals one-shot, and note
that they are the framework studied in [Juba and Sudan 2008a; 2008b]. We provide a
treatment of one-shot goals using the much more transparent modeling of the current
exposition in Section 6.

14We note that Juba and Vempala [2011] have confirmed this conjecture in work subsequent to the posting
of the preprint of this paper on ECCC. An alternative model presenting another special case in which the
overhead may be reduced was also presented in subsequent work by Juba and Sudan [2011].

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Goldreich et al.

3. GOALS: PARTIES, COMPACTNESS, ACHIEVABILITY, AND SENSING
3.1. The parties
We consider three types of parties: a user, which represents “us” (or “our point of view”),
a server (or a set of servers), which represents “other entities” (the help of which “we”
seek), and a world, which represents the environment in which the user and server(s)
operate. The world may provide the user and server with feedback on the effect of
their actions on the environment (where the actions are modeled as messages sent
to the world), and it may also model the way the environment changes in response
to these actions. The world will also determine whether a goal was achieved (which is
also a feedback that the world may, but need not, communicate to the user and server).
The interaction among these (three types of) parties will be represented by strategies.

Strategies. We prefer to present strategies as explicitly updating the party’s internal
state (as well as determining its outgoing messages). The set of states in which the
system may be in is denoted Ω (indeed, we may assume that Ω = {0, 1}∗). The state
of the system (a.k.a the global state) at any point in time is the concatenation of the
internal states of the various parties and the messages that are in transit among the
parties. Indeed, the internal state of each party (resp., the message in transit between
a pair of parties) is merely a projection of the global state. Fixing the number of parties
to m (e.g., m = 3 is the most common case), for every i ∈ [m]

def
= {1, ...,m}, we denote

the internal state of the ith party when the system is in (global) state σ ∈ Ω by σ(i),
and denote the set of possible internal states of the ith party by Ω(i) (i.e., Ω(i) = {σ(i) :
σ ∈ Ω}). The canonical system that we consider consists of a world player, denoted w, a
user denoted u, and a single server, denoted s; see Figure 1. Likewise, the message in
transit from the ith party to the jth party is denoted σ(i,j) (and the corresponding set of
possible messages is denoted Ω(i,j)). We refer to a synchronous model of communication
in which, at each round, each party sends messages to all other parties.

Definition 3.1. (strategies): A strategy of the ith party in (an m-party system) is a
function from Ω(i) × (×j 6=iΩ

(j,i)) to Ω(i) × (×j 6=iΩ
(i,j)) which represents the actions of

the party in the current communication round. That is, the argument to the function
represents the party’s internal state and the m − 1 messages it has received in the
previous round, and the function’s value represents its updated internal state and the
m− 1 messages that it sends in the current round.

Indeed, such a strategy modifies the global state such that the change only depends
on the corresponding local (internal) state (and the relevant messages in transit), and
its effect is restricted in an analogous manner. Still, to simplify our notation, we will
often write strategies as if they are applied to the (entire) global state and update the
(entire) global state.

The world. Intuitively, the user’s goal is to have some effect on the environment.
Note that effects on the server (or on the user itself) can also be modeled as effects
of the environment (e.g., by letting these parties communicate their internal states to
the environment/world). Thus, part of the world’s internal state indicates whether the
desired goal has been (temporarily) achieved. Actually, we will consider a more general
notion of achieving goals, a notion that refers to an infinite execution of the system.
Intuitively, this may capture reactive systems whose goal is to repeatedly achieve an
infinite sequence of sub-goals. Thus, we augment the world with a referee, which rules
whether such an infinite execution (actually, the corresponding sequence of the world’s
local states) is successful.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:17

(w)

(u)

(s)

(w,u)

(w,s)

(u,s)

(s,u)

(u,w)
(s,w)

user server

the world
σ

σ

σ

σ
σ σ

σ

σ

σ

Fig. 1. The canonical system: the world, user, and server.

Definition 3.2. (referees and successful executions): A refereeR is a function from in-
finite executions to a Boolean value; that is, R : Ωω → {0, 1} (or, actually, R : (Ω(w))ω →
{0, 1}). Indeed, the value of R(σ1, σ2, ...) only depends on σ

(w)
1 , σ

(w)
2 , ... (and it may be

written as R(σ
(w)
1 , σ

(w)
2 , ...)). We say that the infinite execution σ = (σ1, σ2, ...) ∈ Ωω is

successful (w.r.t R) if R(σ) = 1.

The combination of the world’s strategy and a referee gives rise to a notion of a goal.
Intuitively, the goal is to affect the world (environment) in a way that is deemed suc-
cessful by the referee.

Probabilistic and non-deterministic strategies. So far, our formalism has referred to
deterministic strategies. We wish, however, to also consider probabilistic strategies for
all parties. Generalizing Definition 3.1, such a strategy is a randomized process that
maps pairs consisting of the party’s current state and the m − 1 messages that it has
received in the previous round to a distribution over pairs representing the party’s up-
dated internal state and the m − 1 messages that it sends in the current round. On
top of probabilistic strategies, we wish to also model arbitrary changes in the envi-

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Goldreich et al.

ronment that are independent of the interaction among the players; that is, exter-
nal (to the interaction) events that change the environment (i.e., the world’s internal
state). Such changes only depend on the world’s current state and they are confined
to several predetermined possibilities. Indeed, such changes can be modeled by non-
deterministic steps of the world. Assuming that the world never returns to the same
state, such on-line non-deterministic choices (or steps) can can be modeled by an off-
line non-deterministic choice of a probabilistic strategy for the world (chosen from a
set of predetermined possibilities).15

Definition 3.3. (the world’s strategy, revisited): The world’s (non-deterministic) strat-
egy is defined as a set of probabilistic strategies, and the actual world’s strategy is an
element of the former set.

Having revised our definitions of strategies, we are ready to formally define goals and
executions.

Definition 3.4. (goals): A goal is a pair consisting of a (non-deterministic) world
strategy and a referee.

Indeed, the non-deterministic world strategy describes the possible behavior of the
environment in which we operate (including the way it interacts with the user and
server), whereas the referee determines what executions are deemed successful.

When defining executions, we fix an actual world’s strategy that is consistent with
the world’s (non-deterministic) strategy (i.e., an element of the latter set). Fixing prob-
abilistic strategies to all parties gives rise to a sequence of random variables that
represents the distribution over the possible sequences of (global) states of the system.

Definition 3.5. (executions): An execution of a system consisting of the m probabilis-
tic strategies, denoted P1, ..., Pm, is an infinite sequence of random variables X1, X2, ...
such that for every t ≥ 1 and every i ∈ [m] it holds that

(X
(i)
t+1, X

(i,·)
t+1)← Pi(X

(i)
t , X

(·,i)
t),

where X(·,i)
t = (X

(j,i)
t)j 6=i and X

(i,·)
t+1 = (X

(i,j)
t+1)j 6=i. Unless it is explicitly stated differ-

ently, the execution starts at the system initial state (i.e., X1 equals a fixed initial
global state). An execution of the system P1, ..., Pm starting in an arbitrary global state
σ1 is defined similarly, except that X1 is set to equal σ1.

When we wish to consider an arbitrary value in the support of the sequence X =
(X1, X2, ...), we shall use the term an actual execution. For example, we say that the
execution X succeeds with probability p if the probability that X belongs to the set of
(actual) successful executions equals p. Referring to the foregoing framework, let us
consider a few examples.

Example 3.6. (predicting the world coins): A simple but impossible to achieve goal
is predicting the world’s coin tosses. This goal may be formulated by considering a
(single actual)16 world strategy that, at each round, tosses a single coin and sets its
local state according to the coin’s outcome, and a referee that checks whether (at each
round) the message sent by the user to the world equals the world’s current state.

15Indeed, the latter set of possible probabilistic strategies may be isomorphic to the set of reals. Our treat-
ment of probabilistic and non-deterministic choices is intentionally different: it facilitate fixing the non-
deterministic choices and considering the distribution of the execution of the residual probabilistic system
(which consists of probabilistic strategies).
16Indeed, in this example, the world’s non-deterministic strategy is a singleton, containing a single actual
strategy.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:19

s
r

s
r

s
r

χ()

s
r

χ()

W U S

round r

round r+1

round r+2

round r+3

Fig. 2. The time-line for getting the server’s help in deciding instances of D.

Since this world’s actual strategy does not communicate any information to the user,
no user strategy may succeed with positive probability (since the number of rounds
exceeds the logarithm of the reciprocal of any positive number).

Note that in this example no server can help the user to achieve its goal (i.e., succeed
with positive probability). In contrast, if the world communicates its state to the server,
and the referee checks whether the message sent by the user to the world (at each
round) equals the world’s state two rounds before, then an adequate server may help
the user succeed with probability 1.

Example 3.7. (solving computational problems posed by the world): For a fixed deci-
sion problem D, consider a non-deterministic world strategy that in round r generates
an arbitrary r-bit string, denoted sr, and communicates it to the user, and a referee
that checks whether, for every r > 2, the message sent by the user to the world at
round r equals χD(sr−2), where χD(s) = 1 if and only if s ∈ D. Indeed, this goal can be
achieved by the user if and only if in round r + 1 it has computational resources that
allow for deciding membership in D ∩ {0, 1}r.

Note that also in this example no server can help the user, since the user obtains the
“challenge” at round r and needs to answer at round r + 2 (which does not allow for
communicating the challenge to the server and obtaining the server’s answer in time).
In contrast, if the goal is modified such that the referee checks the user’s message in
round r against the world’s message of round r− 3, then communicating with a server
that has computing power that exceeds the user’s power may be of help. Indeed, in
this modified goal, communication between the user and the server allows the user to
obtain computational help from the server (see Figure 2). A goal in which the server’s
help is required, regardless of computational resources, follows.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Goldreich et al.

Example 3.8. (printing): Think of the server as a printer that the user wishes to use
in order to print text that is handed to it by the environment. That is, consider a non-
deterministic world strategy that at each round r generates an arbitrary bit br ∈ {0, 1}
and communicates br to the user, and a referee that checks whether, for every r > 2,
the message sent by the sender to the world at round r equals br−2.

Indeed, the only way that a user can achieve this goal is by transmitting br to the
server in time r + 1, and counting on the server to transmit this bit to the world in
round r + 2.

The computational complexity of strategies. Since strategies are essentially func-
tions, it is natural to define their complexity as the complexity of the corresponding
functions. We follow this convention with two modifications (adaptations):

(1) We define complexity with respect to the size of the current state (rather than
with respect to the length of its description), where size is an adequate function of the
state that need not equal the length of its description. For example, in some cases we
may wish for the world to make nondeterministic choices based the current history, in
which case the world’s state has length proportional to the history, whereas we may
wish the size to be independent of the history length. In other cases, we may wish the
size to reflect the difficulty of coping with the world’s state, that is, the “complexity”
of the current environment, which may not be uniformly reflected by its length (e.g.,
we may want the complexity of state (c, x) to be |x|c rather than a fixed polynomial in
|(c, x)|). Nevertheless, typically, the size will be polynomially related to the length, but
this relation need not be fixed a priori.

(2) When we consider the complexity of a user strategy, we will assume that the
other parties (one or more servers) have been fixed in advance, and consider the asymp-
totic worst-case complexities over environment states of fixed sizes in the usual way.
That is, we wish to capture the phenomenon that the complexity of a user strategy
may change depending on the server that the user interacts with.

3.2. Compact goals
Examples 3.6–3.8 belong to a natural class of goals, which we call compact. In compact
goals, success can be determined by looking at sufficiently long (but finite) prefixes of
the actual execution. Indeed, this condition refers merely to the referee’s predicate, and
it guarantees that the set of successful executions is measurable with respect to the
natural probability measure (see Appendix). Furthermore, the compactness condition
also enables the introduction of the notion of user-sensing of success (see Section 3.4).

By incorporating a record of all (the relevant information regarding) previous states
in the current state, it suffices to take a decision based solely on the current state.17 As
in the case of the referee function R, the temporary decision captured by R′ is actually
a function of the world’s local state (and not of the entire global state).

Definition 3.9. (compactness): A referee R : Ωω → {0, 1} is called compact if there
exists a function R′ : Ω→ {0, 1,⊥} (or, actually, R′ : Ω(w) → {0, 1,⊥}) such that for every
σ = (σ1, σ2, ...) ∈ Ωω it holds that R(σ) = 1 if and only if the following two conditions
hold

17That is, consider a definition analogous to Def. 3.9, where R′ : Ω∗ → {0, 1,⊥} and the conditions refer
to R′(σ1, σ2, ..., σi) rather than to R′(σi). Then, using (σ1, σ2, ..., σi) as the ith state, allows to move to the
formalism of Def. 3.9. Furthermore, in typical cases it suffices to include in the ith state only a “digest” of
the previous i− 1 states.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:21

(1) The number of failures is finite: There exists T such that for every t > T it holds
that R′(σt) 6= 0 (or, actually, R′(σ(w)

t) 6= 0).
(2) There are no infinite runs of ⊥: For every t > 0 there exists t′ > t such that

R′(σt′) 6= ⊥.

The function R′ is called the temporal decision function.

Indeed, the special symbol ⊥ is to be understood as suspending decision regarding the
current state. Definition 3.9 asserts that an execution can be deemed successful only if
(1) failure occurs at most a finite number of times and (2) decision is not suspended for
an infinite number of steps. (A stronger version of (Condition 2 of) Definition 3.9 may
require that there exists B such that for every t > 0 there exists t′ ∈ [t+ 1, t+B] such
that R′(σt′) 6= ⊥.)18

Multi-session goals. Examples 3.6–3.8 actually belong to a natural subclass of com-
pact goals, which we call multi-session goals.19 Intuitively, these goals consist of an
infinite sequence of sub-goals, where each sub-goal is to be achieved in a finite number
of rounds, which are called the current session. Furthermore, the world’s state is (non-
deterministically) reset at the beginning of each session (indeed, as in Example 3.7).
We further restrict such goals in the following definition, where these restrictions are
aimed at capturing the intuitive notion of a multi-session goal.

Definition 3.10. (multi-session goals): A goal consisting of a non-deterministic strat-
egyW and a referee R is called a multi-session goal if the following conditions hold.

(1) The world’s states: The local states of the world are partitioned into three non-
empty sets consisting of start-session states, end-session states, and (intermediate) ses-
sion states. Each of these states is a pair consisting of an index (an integer representing
the index of the session) and a contents (representing the state of the actual execution of
the session).20 The initial local state corresponds to the pair (0, λ), and belongs to the
set of end-session states.

(2) The referee suspends verdict until reaching an end-session state: The referee R is
compact. Furthermore, the corresponding temporal decision function R′ evaluates to
⊥ if and only if the current state is not an end-session state.

(3) Starting a new session: When being in an end-session state, the world moves non-
deterministically to a start-session state while increasing the index. Furthermore, this
move is independent of the actual contents of the current end-session state. That is, for
each actual world strategy W ∈ W, the value of W is invariant over all possible end-
session states that have the same index (i.e., for every two end-session state (i, σ′) and
(i, σ′′), it holds that W (i, σ′)(w) = W (i, σ′′)(w) ∈ {i+ 1}×Ω, and similarly for W (i, ·)(w,·)).

18It is tempting to suggest even a stronger version of Definition 3.9 in which both T and B are absolute
constants, rather than quantities determined by the sequence σ; however, such a stronger definition would
have violated some of our intuitive desires. For example, we wish to focus on “forgiving” goals that are
achieved even if the user adapts a good strategy only at an arbitrary late stage of the execution, and so
we cannot afford to have T be execution invariant. Also, for an adequate notion of “size” (of the current
state), we wish to allow the user to achieve the goal by interacting with a server for a number of rounds that
depends on this size parameter (and suspend decision regarding success to the end of such interactions). In
fact, we even “forgive” infinite runs of ⊥’s if they result from a permanent increase in the size parameter.
19Actually, to fit Examples 3.7 and 3.8 into the following framework we slightly modify them such that the
world generates and sends challenges only at rounds that are a multiple of three. Thus, the ith session
consists of rounds 3i, 3i+ 1, 3i+ 2.
20The states are augmented by an index in order to allow for distinguishing the same contents when it
occurs in different sessions. This is important in order to allow different non-deterministic choices in the
different sessions (cf. Condition 3).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Goldreich et al.

Optional: The world can also notify the user that a new session is starting, and even
whether or not the previous session was completed successfully (i.e., withR′ evaluating
to 1). Analogous notifications can also be sent to the server.

(4) Execution of the current session: When being in any other state, the world moves
probabilistically while maintaining the index of the state (i.e., for every W ∈ W and
such state (i, σ′), it holds that W (i, σ′) = (i, ·)). Furthermore, the movement is indepen-
dent of the index as well as of the actual world strategy; that is, for every W1,W2 ∈ W
and every i1, i2 ∈ N and σ′, σ′′ ∈ Ω, it holds that Pr[W1(i1, σ

′) = (i1, σ
′′)] equals

Pr[W2(i2, σ
′) = (i2, σ

′′)].

The execution of a system that corresponds to Def. 3.10 consists of a sequence of ses-
sions, where each session is a sequence of states sharing the same index. Indeed, all
the states in the ith such sequence have index i, and correspond to the ith session. The
temporal decision function R′ determines the success of each session based solely on
the state reached at the end of the session (which also includes the session’s index),
and it follows that the entire execution is successful if and only if all but finitely many
sessions are successful. We stress that, except for the index, the world’s local state car-
ries no information about prior sessions. Furthermore, with the exception of the initial
move into a start-session state, the world’s actions during the session are oblivious of
the session’s index. (In contrast to the world’s action, the strategies of the user and
server may maintain arbitrary information across sessions, and their actions in the
current session may depend on this information.)

Repetitive (multi-session) goals. A special type of multi-session goals consists of the
case in which the world repeats the non-deterministic choices of the first session in
all subsequent sessions. We stress that, as in general multi-session goals, the world’s
probabilistic choices in each session are independent of the choices made in other ses-
sions.21

Definition 3.11. (repetitive goals): A multi-session goal consisting of a non-
deterministic strategy W and a referee R is called repetitive if its non-deterministic
choice is independent of the index; that is, for every W ∈ W and every i ∈ N and
σ′ ∈ Ω, it holds that W (i, σ′) ≡W (1, σ′).22

Indeed, any multi-session goal using a world strategy that makes no non-deterministic
choices (cf., e.g., Example 3.6) is a repetitive goal. An example of a repetitive goal that
does involve non-deterministic choices follows.

Example 3.12. (repeated guessing with feedback): Consider a non-deterministic
world strategy that generates an integer i and proceeds in sessions. Each session con-
sists of two rounds, where in the first round the user sends a guess to the world, and
in the second round the world notifies the user whether or not its guess was correct
(i.e., whether or not the message sent by the user in the first round equals i). The referee
deems a session successful if the user sent the correct message i. Indeed, by recording
all previous failed attempts, the user can eventually succeed in a single session, be
informed about it, and repeat this success in all subsequent sessions.

Indeed, the feedback provided by the world is essential for the user’s ability to (even-
tually) succeed in guessing the world’s initial choice.

21Indeed, a stronger notion, which we do not consider here, requires that the world also repeats the prob-
abilistic choices of the first session in all subsequent sessions. We note that this stronger notion cannot be
captured in the current formalism.
22We used X ≡ Y to indicate that the random variables X and Y are identically distributed. Note that if σ′
is an end-session state, then W (i, σ′) and W (1, σ′) are actually fixed strings (and they must be equal).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:23

Generalized multi-session goals. Our formulation of multi-session goals mandates
that the current session must end before any new session can start (see Defini-
tion 3.10). A more general formulation, which allows concurrent sessions, is postponed
to §5.2.1 (cf. Definition 5.4). Note that Examples 3.7 and 3.8 fit this general formulation
without any modification (cf. Footnote 19).

3.3. Achieving Goals
We have already touched on the notion of achieving a goal, but now we turn to define
it formally, while assuming that the corresponding referee is compact (as per Defini-
tion 3.9). As detailed in the Appendix, the compactness assumption implies that the
set of successful executions is measurable (with respect to the natural probability mea-
sure). The basic definition of achieving a goal is as follows.

Definition 3.13. (achieving goals): We say that a pair of user-server strategies,
(U, S), achieves the goal G = (W, R) if, for every W ∈ W, a random execution of the
system (W,U, S) is successful with probability 1, where success is as in Def. 3.2.

Recall that by Definition 3.5, our convention is that (unless stated differently) the
execution starts at the system’s (fixed) initial global state. However, in the sequel we
will be interested in what happens when the execution starts in an arbitrary state,
which might have been reached before the actual execution started. This reflects the
fact that the environment (or world) is not initialized each time we (users) wish to
achieve some goal, and the same may hold with respect to the servers that we use.
Thus, a stronger notion of achievable goals arises.

Definition 3.14. (robustly achieving goals): We say that a pair of user-server strate-
gies, (U, S), robustly achieves the goal G = (W, R) if for every W ∈ W and every global
state σ1 a random execution of the system (W,U, S) starting in state σ1 is successful
with probability 1.

Indeed, this notion of robust achievability is “forgiving” of an initial portion of the
execution that may be carried on by inadequate user and/or server strategies. A more
refined definition, which quantifies over a subset of the possible states, is postponed
to Section 5 (see Definition 5.10). Most importantly, this refined definition allows us to
consider the (natural case of the) set of all global states in which the user’s local state
is reset to some initial value. (Indeed, in contrast to resetting the world, resetting
the user seems feasible in many cases, and seems less demanding than resetting the
server.)

PROPOSITION 3.15. (robustness allows ignoring execution prefixes): Let Ut (resp.,
St) be a user (resp., server) strategy that plays the first t rounds using the user strategy
U0 (resp., server strategy S0) and plays all subsequent rounds using the user strategy
U (resp., server strategy S). Then, if (U, S) robustly achieves the goal G = (W, R), then
so does (Ut, St).

The proof only uses the hypothesis that (W,U, S) is successful when started in a state
that may be reached by an execution of W with an arbitrary pair of user and server
strategies. Indeed, for all practical purposes, the definition of robust achievability may
be confined to such initial states (i.e., in Definition 3.14, we may quantify only over
states σ1 that can be reached in some execution of the system (W0, U0, S0), where W0 ∈
W and (U0, S0) is an arbitrary user–server pair).

PROOF. The proposition follows by considering the execution of the system (W,U, S)
starting at the state, denoted σ1, that is reached after t rounds of the system (W,U0, S0).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Goldreich et al.

(Indeed, σ1 may be a distribution over such states.) By combining the robust achiev-
ability hypothesis (which refers to the execution of (W,U, S) started at σ1) and the
compactness hypothesis (which allows discarding the t first steps of (W,Ut, St)), we
conclude that the execution of (W,Ut, St) (started at any state σ′1) is successful with
probability 1.

Achievable goals. We may say that a goal G = (W, R) is achievable (resp., robustly
achievable) if there exists a pair of user-server strategies that achieve (resp., robustly
achieve) G. Indeed, as hinted before, predicting the world’s coins (i.e., Example 3.6)
is an unachievable goal, whereas the goals of Examples 3.7 and 3.8 are (robustly)
achievable. Note, however, that the printing goal (i.e., Example 3.8) is achievable by
a very simple user–server pair, whereas solving the computational problems posed by
the world (i.e., Example 3.7) is achievable only by a sufficiently powerful user (i.e.,
one that can decide membership in D). Thus, achievable goals are merely our starting
point; indeed, starting with such a goal G, we shall ask what should be required of
a user–server pair that achieves G and what should be required of a user that can
achieve this goal when paired with any server that is taken from a reasonable class.

3.4. Sensing
The achievability of the goal of “repeated guessing with feedback” (i.e., Example 3.12)
relies on the feedback provided to the user (regarding its success in previous sessions).
In general, such feedback is reasonable to assume in the context of many multi-session
goals, and (as we shall see) such feedback can also be helpful to the user in non-
repetitive goals.

Intuitively, we shall consider world strategies that allow the user to sense its
progress towards achieving the goal, where this sensing should satisfy adequate safety
and viability conditions. Loosely speaking safety means that if the user gets a positive
indication (i.e., senses progress) almost all the time, then the goal is actually achieved,
whereas viability means that when the goal is achieved the user gets positive indication
almost all the time. Thus, infinitely many negative indications should occur if and only
if the execution fails. (As usual, we will represent a positive indication by the value 1,
and a negative indication by 0.)

The aforementioned indication is provided by a function, denoted U ′, of the user’s
current state. We stress that this function U ′ is tailored for the corresponding user
strategy U , and should be viewed as an augmentation of the user strategy U . The func-
tion U ′ is required to be viable and safe. Note that viability is not meaningful without
safety, and vice versa; for example, under any reasonable definition, the all-zero func-
tion is (trivially) safe, whereas the all-one function is (trivially) viable. Although we
will be interested in safety and viability with respect to classes of possible servers, we
find it useful to define restricted notions of safety and viability that refer to a fixed
server strategy.

Definition 3.16. (user sensing function, weak version): Let G = (W, R) be a com-
pact23 goal and S be a server strategy. The predicate U ′ : Ω → {0, 1} (or rather
U ′ : Ω(u) → {0, 1}) is safe with respect to (U, S) (and G) if, for every W ∈ W and
every σ1 ∈ Ω, letting σ denote a random execution of the system (W,U, S) starting at
state σ1, with probability 1, it holds that if R(σ) = 0 then for infinitely many t it holds
that U ′(σt) = 0. The predicate U ′ is viable with respect to (U, S) if, for every W ∈ W
and every σ1 ∈ Ω, with probability 1, it holds that U ′(σt) = 0 holds for finitely many t.

23Actually, the current definition does not refer to the compactness condition (and is also applicable w.r.t non-
compact goals). The compactness condition was added here for consistency with the following definitions,
which do refer to it (or rather to the temporal decision function provided by it).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:25

Indeed, if U ′ is viable and safe with respect to (U, S) (and G), then (U, S) robustly
achieves the goal G, because viability implies that a random execution yields finitely
many negative indications, whereas safety implies that in such a case the goal is
achieved. In particular, if U ′ is safe with respect to (U, S), then, with probability 1, if U ′
evaluates to 0 finitely many times, then the corresponding temporal decision function
R′ evaluates to 0 finitely many times.

The foregoing reference to the temporal decision function R′ suggests stronger (i.e.,
quantified) notions of sensing. Intuitively, we seek a stronger notion of (safe) sensing in
which failure (as per R′) is sensed after a bounded number of steps (rather than even-
tually). Similarly, a stronger notion of viability should guarantee a positive indication
after a bounded number of steps (rather than eventually). That is, in both cases, the
“grace period” (of bad sensing) is explicitly bounded rather than merely postulated to
be finite. This bound will be stated in terms of an adequate notion of “size” (of the cur-
rent state), denoted s(σ), thus allowing the grace period to depend on the “complexity”
(or rather the “size”) of the relevant states. For simplicity, we assume here that the size
of the various states remains invariant throughout the execution; the general case (in
which the size varies) will be dealt with in Section 5.1. Anyhow, we assume that the
size of the current state is known to the user in the present development.

Our formulation will be further simplified by observing that the quantification over
all initial states (which also takes place in Definition 3.16) allows us to focus on grace
periods that start at time 1 (rather than considering grace periods that start at time t
for any t ∈ N). These considerations lead to the following definition, which is a straight-
forward strengthening of Definition 3.16.

Definition 3.17. (user sensing function, very strong version): Let G = (W, R), S, U ,
and U ′ be as in Def. 3.16, and let s : Ω → N be the aforementioned size function. We
say that U ′ is very strongly safe with respect to (U, S) (and G) if there exists a function
B : N → N such that, for every W ∈ W and every σ1 ∈ Ω, the following two conditions
hold.

(1) If R′(σ1) = 0, then, with probability at least 2/3, for some t ≤ B(s(σ1)) it holds
that U ′(σt) = 0, where σt denotes the system’s state after t rounds.

(2) If for every i ∈ [B(s(σ1))] it holds that R′(σi) = ⊥, then, with probability at
least 2/3, for some t ∈ [B(s(σ1)) + 1, 2B(s(σ1))] it holds that U ′(σt) = 0, where σi, σt are
as above.

Analogously, U ′ is strongly viable with respect to (U, S) if, for every W ∈ W and every
σ1 ∈ Ω, with probability at least 2/3, for every t ≥ B(s(σ1)) it holds that U ′(σt) = 1. We
say that strong viability holds perfectly if the foregoing holds with probability 1 (i.e.,
for every W ∈ W and every σ1 ∈ Ω, with probability 1, it holds that U ′(σt) = 0 holds for
finitely many t).

We note that satisfying the first safety condition of Definition 3.17 implies that, for
every W ∈ W and σ1 ∈ Ω and every T > 0, if R′(σT) = 0 then, with probability at
least 2/3, for some t ∈ [T, T + B(s(σT))] it holds that U ′(σt) = 0, where σi denotes the
system’s state after i rounds. Analogous statements apply to the second safety condi-
tion and to the viability condition (of Definition 3.17). It follows that very strong safety
(resp., viability) as in Definition 3.17 implies weak safety (resp., viability) satisfying
Definition 3.16 (because infinitely many sensing failures imply infinitely many dis-

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Goldreich et al.

joint B-long intervals containing sensing failure).24 All of this will apply also to the
following definition (which is a relaxation of Definition 3.17).

In order to motivate the following definition, note that Definition 3.17 requires that
failure be detected even if the execution has recovered from it. For example, the first
safety condition requires that U ′ senses that R′(σ1) = 0 (i.e., U ′(σt) = 0 for some
t ≤ B(s(σ1))) even if R′(σi) = 1 for every i > 1. Insisting on detection of an old (initial)
failure that is no longer relevant seems unnecessary, and it may make the design sens-
ing functions (unnecessarily) harder. The following (relaxed w.r.t Def. 3.17) definition
requires detection of an initial failure only in the case that the entire execution has
failed. In other words, if the sensing function “believes” that the possible initial failure
is no longer relevant, then it is not required to signal an alarm.

Definition 3.18. (user sensing function, strong version): Let G = (W, R), S, U , and
U ′ be as in Def. 3.16. We say that U ′ is strongly safe with respect to (U, S) (and G) if
there exists a function B : N → N such that, for every W ∈ W and every σ1 ∈ Ω, the
following conditions hold.

(1) If R′(σ1) = 0, then, with probability at least 2/3, either R(σ) = 1 or for some
t ≤ B(s(σ1)) it holds that U ′(σt) = 0, where σ = (σ1, σ2, ...,) denotes a random execution
of the system (W,U, S).

(2) If for every i ∈ [B(s(σ1))] it holds that R′(σi) = ⊥, then, with probability at
least 2/3, either R(σ) = 1 or for some t ∈ [B(s(σ1)) + 1, 2B(s(σ1))] it holds that U ′(σt) =
0.

The strong viability condition is exactly as in Def. 3.17.

We mention that the strong sensing version (i.e., as per Definition 3.18) implies the
weak one (i.e., as per Definition 3.16).25 We will refer mainly to the weak and strong
versions (i.e., Definitions 3.16 and 3.18, respectively); the very strong version (i.e.,
Definition 3.17) was presented mainly for clarification.

Safety with respect to classes of servers. Sensing is crucial when the user is not sure
about the server with whom it interacts. Recall that Section 3.3 ended with a declared
focus on achievable goals; but this only means that the adequate user U can be sure
that it achieves the goal when it interacts with an adequate server. But this user may
not be aware that the server is actually not the designated one, and in such a case
if interaction with this server is not leading to success, then the user may wish to
be notified of this failure. For this reason, we will be interested in sensing functions
U ′ that are viable with respect to some (U, S0) and satisfy the safety condition with
respect to (U, S) for every S in a set of servers S.

Definition 3.19. (safety w.r.t classes of servers). For each version of safety, we say
that U ′ is safe with respect to U and the server class S (and the goal G) if for every
S ∈ S it holds that U ′ is safe with respect to (U, S) (and G). In some contrast, for each

24The foregoing sketchy justification seems to suffice for the case of strong viability that holds perfectly, but
even in such a case a more rigorous argument is preferable. Indeed, suppose that strong viability holds, (in
the non-perfect sense) and consider the event F that there are infinitely many negative sensing indications.
For any execution prefix σ1, . . . , σt, strong viability implies that the probability that F holds and σ1, . . . , σt
is observed is at most 1/3 the probability that σ1, . . . , σt is observed. But now, F is a measurable event in the
sigma-algebra generated by these prefix events (see Appendix) and so, writing F in terms of these events,
we find that the probability of F occurring is at most 1/3 the probability of F occurring—that is, F must
occur with probability zero, and so weak viability holds. Dealing with the safety conditions is somewhat
more complicated. One has to show that the very strong safety condition implies that the probability that a
random execution σ is unsuccessful (i.e., R(σ) = 0) and yet {t ∈ N : U ′(σt) = 0} is finite is zero.
25This requires a proof; cf. Footnote 24.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:27

version of viability, we say that U ′ is viable with respect to U and the server class S if
there exists S ∈ S such that U ′ is viable with respect to (U, S).

4. ON HELPFUL SERVERS AND UNIVERSAL USERS
Our focus is on the cases in which the user and server need to collaborate in order to
achieve the goal. Indeed, in order to collaborate, the user and server may need to com-
municate. Furthermore, they need to understand one another. The latter requirement
is non-trivial when the server may be selected arbitrarily within some class of helpful
servers, where a server is helpful if it can be coupled with some user so that this pair
achieves the goal. That is, at best, we can expect to achieve the goal when communicat-
ing with a server S for which there exists a user strategy U such that (U, S) achieves
the goal. But even in this case, the mere existence of a suitable user strategy U does
not suffice, because we may not know this strategy. Still, we start with the assumption
that such a user strategy U exists, which leads to the definition of a helpful server.

Helpful servers. Fixing an arbitrary (compact) goal G = (W, R), we say that a server
S is helpful if there exists a user strategy U such that (U, S) achieves the goal. We
strengthen this helpfulness requirement in two ways. Firstly, we will require that
(U, S) robustly achieves the goal, rather than merely achieves it. This strengthen-
ing reflects our interest in executions that start at an arbitrary state, which might
have been reached before the actual execution started (cf. Definition 3.14). Secondly,
at times, we may require that the user strategy U (for which (U, S) robustly achieves
the goal) belongs to some predetermined class of strategies U (e.g., a class of efficient
strategies).

Definition 4.1. (helpfulness): A server strategy S is U-helpful (w.r.t the goal G) if
there exists a user strategy U ∈ U such that (U, S) robustly achieves the goal G.

When U is not specified, we usually mean that helpfulness holds with respect to the
class of all recursive user strategies.

4.1. Universality and guarded helpfulness
When allowed to interact with a known (to us) helpful server, we may achieve the
goal (if we use the strategy U that is guaranteed by Definition 4.1). But what happens
when we are allowed to interact with a server that is selected arbitrarily among several
helpful servers? Specifically, suppose that both S1 and S2 are U-helpful, does this mean
that there exists a user strategy U (let alone in U) such that both (U, S1) and (U, S2)
achieve the goal? As shown next, the answer may be negative.

Example 4.2. (using one out of two different printers): In continuation to Exam-
ple 3.8, for every i ∈ {0, 1}, consider a printer Si such that, in each round, upon receiv-
ing the message b from the user, the printer Si sends the message b ⊕ i to the world.
That is, if at round r + 1 the server Si receives b, then at round r + 2 it sends the mes-
sage b⊕ i to the world. Note that each of these two server strategies is {U0, U1}-helpful,
where Ui is a user strategy that at round r+1 sends br⊕i to the server, where br ∈ {0, 1}
denotes the message sent by the world to the user in round r. However, there exists no
user strategy U such that both (U, S0) and (U, S1) achieve the goal.

Indeed, one may think of U1 and S1 as using, for communication among them, a differ-
ent language than the one used by the world (i.e., they interpret 0 as 1, and 1 as 0).
This is not so odd if we bear in mind that the communication between the various pairs
of parties represents communication over vastly different media; for example, the user
obtains email (from the world), which the user sends to the printer in some adequate
format, while the printer produces an image (in the world). Thus, Example 4.2 can be

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Goldreich et al.

made more realistic by saying that there exists two text formating functions, denoted
f0 and f1 (e.g., PostScript and PDF) such that the following holds: if, at round r, user Ui
receives the email text Tr (from the world), then it sends fi(Tr) to the server in round
r+1, whereas when server Sj receives the message M from the user it prints an image
of f−1j (M) (i.e., it sends the message f−1j (M) to the world).

Example 4.3. (two printers, modified): In continuation to Example 4.2, we consider
a modified goal in which the world sends in each round a pair of bits (b, s) such that
b is as above (i.e., as in Examples 3.8 and 4.2) and s indicates whether the referee
is satisfied with the last message received by the server. In this case, there exists a
simple user strategy U such that both (U, S0) and (U, S1) achieve the goal. Specifically,
U first behaves as U0, and if it gets an indication (in round 3) that printing failed, then
it switches to using U1.

Indeed, in this case the world’s messages suggest a user sensing function that is both
safe and viable (w.r.t the server class {S0, S1}). This sensing function allows the user to
recover from failure (by learning with which server it interacts and acting accordingly).

Universal users. The user strategy U of Example 4.3 achieves the corresponding goal
when coupled with any server strategy in the class S def

= {S0, S1}. Thus, we may say
that U is S-universal (in the sense defined next).

Definition 4.4. (universality): A user strategy U is S-universal (w.r.t the goal G) if for
every server strategy S ∈ S it holds that (U, S) robustly achieves the goal G.

Needless to say, if U is S-universal, then every S ∈ S must be U-helpful for any U
that contains U . Thus, we cannot have S-universal users whenever the server class S
contains unhelpful strategies. In fact, a stronger statement holds.

PROPOSITION 4.5. (universal strategies have trivial user-sensing functions): If U
is S-universal, then there exists a sensing function U ′ such that U ′ is strongly viable
and (weakly) safe with respect to (U, S) for any S ∈ S.

Indeed, as its title indicates, the user-sensing function provided by the proof of Propo-
sition 4.5 is rather trivial (and is based on the hypothesis that for every S ∈ S it holds
that (U, S) achieves the goal).26 Still Proposition 4.5 is meaningful as a necessary condi-
tion for the design of S-universal users; that is, we must be able to design a user-sensing
function that is both safe and viable for the class of servers S.

PROOF. Let U ′ be identically 1, and consider any S ∈ S. Then, viability of U ′ (under
any version) holds trivially. The weak version of safety (i.e., Def. 3.16) holds vacuously
for U ′ (w.r.t (U, S)), because for every W ∈ W a random execution of (W,U, S) starting
at any state σ1 is successful with probability 1.

Proposition 4.5 provides a necessary condition for the design of universal users, but
what we actually seek are sufficient conditions. The following theorem states a seem-
ingly general sufficient condition for the existence of a S-universal user: The main
condition (i.e., the main part of Condition 1) is closely related to saying that every
S ∈ S is U-helpful in a strong sense; specifically, S can be used by a user strategy that
is augmented with a sensing function that is viable with respect to S and safe with
respect to the server class S.

26Interestingly, strong safety does not seem to follow because the discrepancy between the bounded nature of
the strong safety condition and the unbounded nature of the definition of achieving a goal. This discrepancy
is eliminated in Section 4.4.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:29

THEOREM 4.6. (on the existence of universal strategies): Let G = (W, R) be a com-
pact goal, U be a set of user strategies and S a set of server strategies such that the
following two conditions hold.

(1) For every S ∈ S there exists a user strategy U ∈ U and a user sensing function
U ′ such that U ′ is strongly viable with respect to (U, S) and is weakly safe with re-
spect to U and the server class S (and G).27 Furthermore, the mapping U 7→ (U ′, B)
is computable,28 where B is the bounding function guaranteed by the strong viability
condition.

(2) The set U is enumerable.

Then, there exists an S-universal user strategy (w.r.t G). Furthermore, if the (strong)
viability condition holds perfectly, then, for every S ∈ S, the complexity of the universal
user strategy when interacting with S is upper-bounded by the complexity of some fixed
strategy in U (when interacting with S).

Indeed, Condition 1 (which implies weak sensing as per Definition 3.16)29 implies that
every S ∈ S is U-helpful; in fact, it implies that every S ∈ S is U-helpful in a strong
sense (to be defined in Definition 4.7). Also note that only weak safety is required in
Condition 1. We mention that there is an intuitive benefit in having strong safety, but
this benefit is not reflected by the statement of the theorem. We shall return to this
issue in Section 4.4.

PROOF. We construct a user strategy, denoted U , that operates as follows. The strat-
egy U enumerates all Ui ∈ U , and emulates each strategy Ui as long as it (via U ′i)
obtains no proof that Ui (coupled with the unknown server S ∈ S) fails to achieve
the goal. Once such a proof is obtained, U moves on to the next potential user strategy
(i.e., Ui+1). If this “proof system” is sound, then U will never be stuck with a strategy Ui
that (coupled with the unknown server S ∈ S) does not achieve the goal. On the other
hand, the completeness of this “proof system” and the hypothesis that every S ∈ S is
U-helpful imply that there exist a Ui that (once reached) will never be abandoned.

Needless to say, the foregoing argument depends on our ability to construct an ade-
quate “proof system” (for evaluating the performance of various Ui ∈ U). Let Bi be the
bounding function guaranteed by the strong viability condition of U ′i ; that is, viability
guarantees that (with an adequate S) the sensing function U ′i will indicate success af-
ter at most Bi(s(·)) rounds. Thus, a good strategy is to wait for the system to recover
(from potential past failures) for Bi(s(·)) rounds, and abandon the current Ui whenever
U ′i indicates failure after this grace period. A more accurate description follows.

Let us first analyze the case where the (strong) viability condition holds perfectly;
that is, with probability 1 (rather than with probability 2/3, as in the main part of Def-
inition 3.17). Suppose that U starts emulating Ui at round ti, and denote the system’s
state at this round by σti . Then, for the first bi ← Bi(s(σti)) rounds strategy U just
emulates Ui, and in any later round t > ti + bi strategy U switches to Ui+1 if and only if
U ′i(σt) = 0.

27See Definition 3.19.
28Recall that we view the sensing function U ′ as an augmentation of the strategy U , and the same applies
to the bound B. Indeed, an alternative formulation of the conditions is obtained by replacing the current
mapping and enumeration requirement by requiring that the set of triples (U,U ′, B) such that U ∈ U (and
(U ′, B) are the corresponding sensing function and strong viability bound) is enumerable.
29See Footnote 25.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Goldreich et al.

CLAIM 4.6.1. Suppose that U ′i is strongly and perfectly viable with respect to (Ui, S),
and consider σ, a random execution of (W,U, S). Then, if this execution ever emulates
Ui, then it never switches to Ui+1.

PROOF. Let ti, and bi be as above. Then, by the strong viability condition, for every
t > ti + bi, it holds that U ′i(σt) = 1.

CLAIM 4.6.2. Suppose that (U, S) does not robustly achieve the goal and consider
a random execution of (W,U, S). Then, recalling that each U ′i is (weakly) safe (w.r.t
(Ui, S)), this execution emulates each Ui for a finite number of rounds.

Combining the foregoing two claims with the hypothesis that for every S ∈ S there
exists a user strategy Ui ∈ U and a user-sensing function U ′i such that U ′i is strongly
viable with respect to (Ui, S), it follows that (U, S) robustly achieves the goal.

PROOF. Let σ1 be a global state such that a random execution of the system starting
at σ1 fails with positive probability, and let σ be such an execution (i.e., R(σ) = 0).
Let ti and bi be as above. Then, by the (weak) safety of U ′i w.r.t (any) S ∈ S (cf., Def-
inition 3.16), for some t′′ > ti + bi (actually for infinitely many such t’s), it holds that
U ′i(σt′′) = 0, which causes U to switch to emulating Ui+1.

The above analysis assumes perfect (strong) viability, which may not hold in gen-
eral. In order to cope with imperfect viability (i.e., a strong viability condition that
holds with probability 2/3) we need to modify our strategy U . Specifically, we will use
a “repeated enumeration” of all machines such that each machines appears infinitely
many times in the enumeration. Furthermore, for every i and t there exists an n such
that Ui appears t times in the first n steps of the enumeration (e.g., use the enumera-
tion 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, ...). Using a modified version of Claim 4.6.1 that asserts that if
the execution starts emulating Ui then it switches to Ui+1 with probability at most 1/3
(equiv., stays with Ui forever), we derive the main claim of the theorem (because after
finitely many R′-failures, strategy U returns to emulating Ui).

Regarding the furthermore claim, we note that the complexity of U (when interacting
with S) is upper bounded by the maximum complexity of the strategies U1, ..., Ui, where
i is an index such that (Ui, S) robustly achieves the goal. Note that the complexity of
the enumeration can be absorbed in the complexity of the emulation itself (by using
tricks such as “lazy enumeration”).

On the computational complexity of the universal strategy. Note that Theorem 4.6
asserts that, for every server S ∈ S, the computational complexity of the universal
strategy (when interacting with S) is comparable to the computational complexity of
some user strategy in U (when interacting with S). Thus, if U denotes the class of user
strategies that are implementable in probabilistic polynomial-time when interacting
with any fixed S ∈ S (where the polynomial may depend on S), then the universal
strategy resides in U . Indeed, this stands in contrast to standard universality results
in complexity theory, where the universal machine does not reside in the class for
which it is universal.30 The reason that the universal strategy of Theorem 4.6 escapes
this fate is that its complexity is measured with respect to the server that it interacts
with, and so it may afford to spend a different amount of time when emulating each of
the corresponding user strategies.

Guarded helpfulness. The hypothesis of Theorem 4.6 (specifically, Condition 1) re-
fer to servers that are not only helpful but rather satisfy a stronger condition, which
we call guarded helpfulness. Recall that a server S is called helpful if it allows for

30Note that completeness results avoid this fate by padding the instances.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:31

achieving the goal (by employing an adequate strategy U). Loosely speaking, guarded
helpfulness means that the strategy U that can use S to achieve the goal is coupled
with a sensing function U ′ that “protects” U in case the server strategy is not helpful to
it (i.e., when interacting with S̃ such that (U, S̃) does not achieve the goal). That is, fix-
ing a class of servers S, we say that a server S (possibly in S) is helpful in an enhanced
(i.e., guarded) sense if S allows achieving the goal by employing a user strategy U that
is coupled with a sensing function U ′ that is both (1) viable with respect to (U, S), and
(2) safe with respect to the server class S. Thus, S not only allows for achieving the
goal but also allows the success to be sensed via a function that is safe with respect to
the server class S. That is, S is helpful to a user strategy U that has a sensing function
U ′ that is viable (w.r.t (U, S)) and safe (w.r.t all strategies in S). We may say that U ′ is
“guarded w.r.t S” (and so the helpfulness of S is “S-guarded”).

Definition 4.7. (enhanced (or guarded) helpfulness): Let G = (W, R) be a compact
goal, U be a set of user strategies and S a set of server strategies. A server strategy S
is S-guarded U-helpful (w.r.t the goal G) if there exists a user strategy U ∈ U and a user
sensing function U ′ such that

(1) U ′ is strongly viable with respect to (U, S), and
(2) U ′ is weakly safe with respect to U and the server class S (and G).

Recall that the hypothesis that U ′ is viable and safe (even only in a weak sense) with
respect to (U, S) (and G) implies that (U, S) robustly achieves the goal G, which in turn
implies that S is U-helpful. We stress that guarded helpfulness is somewhat weaker
than Condition 1 in Theorem 4.6 (i.e., the mapping of U 7→ (U ′, B) is not necessarily
computable).

Note that there may be a difference between S1-guarded U-helpfulness and S2-
guarded U-helpfulness, for S1 6= S2, because a user-sensing function U ′ may be (viable
and) safe with respect to (U,S1) but not with respect to (U,S2). This fact reflects the
relation of guarded helpfulness to universality, discussed next.

4.2. From helpfulness to guarded helpfulness
Proposition 4.5 and Theorem 4.6 relate universality with guarded helpfulness. Specif-
ically, Proposition 4.5 asserts that, if U is S-universal, then every S ∈ S is S-guarded
{U}-helpful. On the other hand, Theorem 4.6 (essentially) asserts that, if every S ∈ S
is helpful31 in an S-guarded manner, then there exists an S-universal user strategy.
Indeed, both S-universality and S-guarded helpfulness become harder to achieve when
S becomes more rich (equiv., are easier to achieve when S is restricted, of course, as
long as it contains only helpful servers).

Since plain helpfulness is self-evident in many settings, the actual issue is moving
from it to guarded helpfulness. That is, the actual issue is transforming user strategies
that witness the plain helpfulness of some class of servers S to user strategies that
support S-guarded helpfulness (of the same class of servers). A simple case when such
a transformation is possible (and, in fact, is straightforward) is presented next.

Definition 4.8. (goals that allow trivial user-sensing): We say that a compact goal
G = (W, R) allows trivial user-sensing if, at each round, the corresponding temporal
decision function R′ evaluates to either 0 or 1, and the world notifies the user of the
current R′-value; that is, for every W ∈ W and every σ ∈ Ω, it holds that the first bit
of W (σ)(w,u) equals R′(σ).

31Indeed, (S-guarded) helpfulness here means (S-guarded) U -helpfulness for some (unspecified) class of user
strategies U .

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Goldreich et al.

We note that compact goals that allow ⊥-runs of a priori bounded length (as in Foot-
note 18) can be converted to (functionally equivalent) compact goals that allow no
⊥-values (w.r.t R′).32

By letting U ′ output the first bit it receives from the world (i.e., U ′(σ) equals the first
bit of σ(w,u)), we obtain a user-sensing function that is strongly safe with respect to any
pair (U, S) and is strongly viable with respect to any (U, S) that robustly achieves the
goal. Thus, we obtain:

PROPOSITION 4.9. (trivial sensing implies guarded helpfulness): Let G = (W, R) be
a compact goal that allows trivial user-sensing, and U be a class of users. If a server
strategy S is U-helpful w.r.t G, then, for every class of server strategies S, the strategy S
is S-guarded U-helpful w.r.t G.

By combining Proposition 4.9 and Theorem 4.6, we obtain

THEOREM 4.10. (trivial sensing implies universality): LetG and U be as in Proposi-
tion 4.9, and suppose that U is enumerable and that S is a class of server strategies that
are U-helpful w.r.t G. Then, there exists an S-universal user strategy (w.r.t G). Further-
more, for every S ∈ S, the complexity of the universal user strategy is upper-bounded by
the complexity of some fixed strategy in U .

PROOF. The sensing function U ′ that arises from Definition 4.8 satisfies Condition 1
of Theorem 4.6 (i.e., U ′ is fixed, B = 1, and the viability and safety conditions hold
perfectly and in a very strong sense). Condition 2 of Theorem 4.6 holds by the extra
hypothesis of the current theorem, which now follows by applying Theorem 4.6.

A variant on allowing trivial user-sensing. One natural case that essentially fits Def-
inition 4.8 is of a transparent world, which intuitively corresponds to the case that the
user sees the entire state of the environment. An evocative informal example may be
found in humans coordinating actions in their immediate (physical) environment, such
as workers assembling goods in a factory: the factory may be modeled as a transparent
world to the workers. A simple formal example captures a user who wishes to edit a file
managed by a revision control system, which is the server in this case: we suppose that
the user has read access to the file, and so the state of the file is visible to the user, but
that any changes to the file are mediated by the server (via the server’s interfaces with
the user and world). That is, we model the world’s state as consisting of the contents of
the file, which is made available to the user strategy by the world on each round. More
generally, a transparent world is defined as a world that communicates its current state
to the user (at the end of each round). Thus, the ability to compute the correspond-
ing temporal decision function R′ puts us in the situation of a goal that allows trivial
user-sensing. Consequently, analogously to Theorem 4.10, we conclude that

THEOREM 4.11. (transparent world implies universality): Let G be a compact goal
with a transparent world. Suppose that U is an enumerable class of user strategies and
that S is a class of server strategies that are U-helpful w.r.t G. Then, there exists an
S-universal user strategy (w.r.t G). Furthermore, for every S ∈ S, the complexity of the

32That is, for R′ as in Definition 3.9, we assume here the existence of a function B : N → N such that
R(σ) = 1 only if for every t > 0 there exists t′ ∈ [t + 1, t + B(s(σ1))] such that R′(σt′) 6= ⊥. In such a
case, the goal can be modified as follows. The states of the modified world will consist of pairs (σ(w), i) such
that σ(w) is the state of the original world and i indicates the number of successive ⊥-values (w.r.t R′) that
preceded the current state. Thus, the index i is incremented if R′(σ(w)) = ⊥ and is reset to 0 otherwise.
The modified temporal decision function evaluates to 1 on input (σ(w), i) if and only if either R′(σ(w)) = 1 or
i < B(s(σ)) and R′(σ(w)) = ⊥.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:33

universal user strategy is upper-bounded by the complexity of some fixed strategy in U
and the complexity of the temporal decision function R′.

Beyond trivial user-sensing. Going beyond goals that allow trivial user-sensing, we
note that a viable and safe user-sensing function may arise from the interaction be-
tween the user and the server (and without any feedback from the world). An in-
structive example of such a case, which can be traced to the first work of Juba and
Sudan [2008a], is reformulated next using our terminology.

Example 4.12. (solving computational problems, revised): In continuation to Exam-
ple 3.7, we consider a multi-session goal that refers to a decision problem, D0. In each
session, the world non-deterministically selects a string and sends it to the user, which
interacts with the server for several rounds, while signaling to the world that the ses-
sion is still in progress. At some point, the user terminates the session by sending an
adequate indication to the world, along with a bit that is supposed to indicate whether
the initial string is in D0, and the referee just checks whether or not this bit value is
correct. Indeed, a simple two-round interaction with a server that decides D0 yields a
user-server pair that achieves this goal, where the user strategy amounts to forward-
ing messages between the world and the server. But what happens if a probabilistic
polynomial-time user can interact with a server that decides D, where D is an arbi-
trary decision problem that is computationally equivalent to D0? That is, we say that
a server is a D-solver if it answers each user-message z with a bit indicating whether
or not z ∈ D, and we ask whether we can efficiently solve D0 when interacting with a
D-solver for an arbitrary D that is computationally equivalent to D0.

— Clearly, for every D ∈ D, any D-solver is U-helpful, where D denotes the class of
decision problems that are computationally equivalent to D0, and U denotes the class
of probabilistic polynomial-time user strategies (strategies that in each session run for
a total time that is upper-bounded by a polynomial in the length of the initial message
obtained from the world).33 Specifically, such a user may just employ the polynomial-
time reduction of D0 to D.

— More interestingly, as shown implicitly in [Juba and Sudan 2008a], if D0 has a
program checker [Blum and Kannan 1989], then for every D ∈ D the D-solver is F-
guarded U-helpful, where F is the class of all memoryless strategies (i.e., strategies
that maintain no local state)34 and U is as above.
Showing that any such D-solver is F-guarded U-helpful amounts to constructing an
adequate user strategy U along with a sensing function U ′ such that U attempts to
answer the initial message obtained from the world by forwarding it to the server
and verifies the correctness of the answer by running the program checker for D0.
Specifically, U emulates a potential program for D0 by using the hypothetical D-solver
via the reduction of D0 to D, and the verdict of the program checker determines the
verdict of U ′. Note that this U ′ is strongly viable with respect to U and the D-solver,
and safe with respect to U and the class F , where the crucial point is that the strategies
in F are memoryless. Furthermore, the bound in the strong viability condition is the
constant 1, since a solver is correct in each round.
Recall that program checkers exist for PSPACE-complete and EXP -complete prob-
lems (cf. [Lund et al. 1992; Shamir 1992] and [Babai et al. 1991], respectively).35

33Indeed, our definition of U restricts both the complexity of the user strategy as a function and the number
of rounds in which the user may participate in any session.
34Recall that strategies map pairs consisting of the current local state and the incoming messages to pairs
consisting of an updated local state and outgoing messages. In case of memoryless strategies there is no
local state (or, equivalently, the local state is fixed).
35See also [Babai et al. 1993].

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 Goldreich et al.

By invoking Theorem 4.6, we obtain an S-universal user strategy, where S denote the
class of all D-solvers for D ∈ D. Furthermore, for every S ∈ S, when interacting with
S this universal strategy can be implemented in probabilistic polynomial-time.

Example 4.12 provides a rather generic class of goals that have S-universal user strate-
gies, where S is a class of “adequate solvers” (and furthermore these universal strate-
gies are efficient). This class of multi-session goals refers to solving computational
problems that have program checkers, and universality holds with respect to the class
of servers that solve all computationally equivalent problems. We stress that the world
strategies underlying these goals provides no feedback to the user, which indeed stands
in sharp contrast to the goals that allow trivial user-sensing (of Definition 4.8).

We mention that the class of “adequate solvers” S considered in Example 4.12 is
actually a strict subset of the class of all U-helpful servers, where U is as in Exam-
ple 4.12. Juba and Sudan [2008a] have actually established a stronger result, which
can be reformulated as referring to the class of all servers that are helpful in a strong
sense that refers to achieving the goal with a bounded number of errors. (Recall that a
general helpful server may cause a finite number of sessions to fail, whereas the afore-
mentioned solvers do allow achieving the goal without making any errors.) For details,
see Section 4.4.2.

4.3. Universality without feedback
While Theorem 4.10 and Example 4.12 provide universal users based on user-sensing
functions that rely on feedback either from the world or from the server (respectively),
we note that universality may also exist in a meaningful way without any feedback.
Below, we identify a class of goals for which this is possible.

Example 4.13. (multi-session “forgiving” communication goals): For any function
f : {0, 1}∗ → {0, 1}∗, we consider the multi-session goal in which each session consists
of the world sending a message, denoted x, to the user and expecting to obtain from the
server the message f(x). That is, the world starts each session by non-deterministically
selecting some string, x, and sending x to the user, and the session ends when the user
notifies the world so. The session is considered successful if during it, the world has
obtained from the server the message f(x). (Indeed, this notion of success is forgiving
in the sense that it only requires that a specific message arrived during the session,
and does not require that other messages did not arrive during the same session.) The
entire execution is considered successful if at most a finite number of sessions are not
successful. Note that this goal is non-trivial (i.e., it cannot be achieved when using a
server that does nothing), and yet it can be achieved by some coordinated user-server
pairs (e.g., a user that just forwards x to the server coupled with a server that applies f
to the message it receives and forwards the result to the world).

PROPOSITION 4.14. (a universal strategy for Example 4.13): Let G = (W, R) be a
goal as in Example 4.13, and U an arbitrary enumerable class of user strategies. Let S
be a class of server strategies such that for every S ∈ S there exists U ∈ U and an integer
n such that in any execution of (U, S), starting at any state, all sessions, with possible
exception of the first n ones, succeed. Then, there exists an S-universal user strategy for
G.

Note that the hypothesis regarding S is stronger than requiring that every server in S
be U-helpful (which only means that for some U ∈ U the pair (U, S) robustly achieves
the goal).36

36This only means that for every S ∈ S there exists U ∈ U such that, in any execution of (U, S) starting at
any state, there exists an integer n such that all sessions, with possible exception of the first n ones, succeed.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:35

PROOF. For simplicity, we first assume that n = 0 (for all S ∈ S). In this case,
the universal strategy, denoted U , will emulate in each session a growing number of
possible user strategies, and will notify the world that the session is completed only
after completing all these emulations. We stress that in all these emulations we relay
messages between the emulated user and the server, but we communicate with the
world only at the beginning and end of each session. Specifically, in the ith session,
U emulates the first i strategies in the enumeration, denoted U1, ..., Ui. For every j =
1, ..., i, we start the emulation of Uj by feeding Uj with the initial message obtained
from the world in the current (i.e., ith) session (as if this is the first session). (Thus,
in the ith real session we only emulate the first session of each of the Uj ’s.) When
emulating Uj , for j < i, we use Uj ’s notification (to the world) that the session is over
in order to switch to the emulation of the next strategy (i.e., Uj+1). When the emulation
of Ui is completed (i.e., when Ui notifies the world that the session is over), we notify
the world that the session is over.

Suppose that U interacts with the server S ∈ S, and let j denote the index of a
user strategy Uj such that (Uj , S) achieves the goal (in the strong sense postulated in
the hypothesis). Then, for every i ≥ j, considering the time ti,j in the ith session in
which we start emulating Uj , we note that the subsequent execution with S yields the
adequate server message to the world, regardless of the state in which S was at time
ti,j . Thus, with a possible exception of the first j − 1 sessions, the pair (U, S) will be
successful in all sessions, and hence (U, S) robustly achieves the goal.

We now turn to the general case, where n may not be zero (and may depend on
S ∈ S). In this case, we modify our emulation such that in the ith real session we
emulate each of the user strategies (i.e., U1, ..., Ui) for i sessions (from each Uj ’s point
of view), where we use the message we received in the real ith session as the message
sent to Uj in each of the emulated sessions. That is, let xi denote the message that U
receives from the world at the beginning of the ith real session. Then, for j = 1, ..., i, the
modified strategy U emulates i sessions of the interaction between Uj and the server
(but, as in the case n = 0, does not notify the world of the end of the current session
before all emulations are completed). Each of these i emulated sessions (in which Uj
is used) starts with feeding Uj the message xi (as if this were the message sent by the
world in the currently emulated session).

For the modified strategy U and every S ∈ S, with a possible exception of the first
max(j − 1, n) sessions, the pair (U, S) will be successful in all sessions, where j is as
before and n is the bound guaranteed for S.

Digest. Proposition 4.14 asserts that there exists universal user strategies for (non-
trivial) goals in which no feedback whatsoever is provided to the user. These goals,
however, are very forgiving of failures; that is, they only require that during each
session some success occurs, and they do not require that there are no failures during
the same session. Hence, we have seen three types of universal users. The first type
exist for goals that allow trivial user-sensing (as in Definition 4.8), the second type rely
on sensing through interaction with the server (as in Example 4.12 (following [Juba
and Sudan 2008a])), and the third type exists for multi-session goals that allow failures
in each session (see Proposition 4.14).

4.4. Universality, revisited
In this section we present two refined versions of Theorem 4.6. The first one is merely
a quantified version of the original, where the quantification is on the number of er-

In the hypothesis of Proposition 4.14, the order of quantification is reversed (from “for every execution there
exists an n” to “there exists an n that fits all executions”).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 Goldreich et al.

rors, which relies on the quality of the sensing functions in use. The second version
introduces a more flexible universal user, which uses a relaxed notion of viability in
which only the total number of negative indications (rather than the length of the time
interval in which they occur) is bounded.

4.4.1. A quantified version (bounding the number of errors). As stated in Section 4.1, the uni-
versal user strategy asserted in Theorem 4.6 does not benefit from the potential strong
safety of user-sensing functions. The intuitive benefit in such user-sensing functions is
that they may allow the universal strategy to switch earlier from a bad user strategy,
thus incurring less errors. Indeed, this calls for a more refined measure of achieving
goals, presented next.

Definition 4.15. (achieving goals (Definition 3.13), refined): Let G = (W, R) be a
compact goal and R′ : Ω→ {0, 1,⊥} be as in Def. 3.9. For B : N→ N, we say that a pair
of user-server strategies, (U, S), achieves the goal G with B errors if, for every W ∈ W,
a random execution σ = (σ1, σ2, ...) of the system (W,U, S) satisfies the following two
conditions:

(1) The expected cardinality of {t ∈ N : R′(σt) = 0} is at most b def
= B(s(σ1)).

(2) The expected cardinality of {t ∈ N : (∀t′∈ [t, t+ b]) R′(σt′) = ⊥} is at most b.

When B is understood from the context, we say that the execution σ contains an error
in round t if either R′(σt) = 0 or for every t′ ∈ [t, t + B(s(σ1))] it holds that R′(σt′) = ⊥.
If σ contains at most B(s(σ1)) errors, then we write RB(σ) = 1.

Note that Definition 4.15 strengthens Definition 3.13, which (combined with Defini-
tion 3.9) only requires conditions analogous to the above where B may depend on the
execution (σ1, σ2, ...). Intuitively, whereas Definition 3.13 only requires that the num-
ber of errors in a random execution be finite, Definition 4.15 requires a bound on the
number of errors such that this bound holds uniformly over all executions (as a func-
tion of the size of the initial state). A similar modification should be applied to the
definition of robustly achieving a goal. Lastly, we refine the definition of strong sens-
ing functions (i.e., Definition 3.18), by replacing all references to R by references to RB
(and specifying the relevant bound B in the terminology). (We also seize the opportu-
nity and replace the fixed error-probability bound of 1/3 by a general bound, denoted
ε.)

Definition 4.16. (strong sensing (Definition 3.18), refined): Let G = (W, R), S, U and
U ′ be as in Def. 3.18. For B : N→ N and ε : N→ [0, 1/3], we say that U ′ is (B, ε)-strongly
safe with respect to (U, S) (and G) if, for every W ∈ W and every σ1 ∈ Ω, the following
conditions hold.

(1) If R′(σ1) = 0, then, with probability at least 1− ε(s(σ1)), either RB(σ) = 1 or for
some t ≤ B(s(σ1)) it holds that U ′(σt) = 0, where σ = (σ1, σ2, ...,) denotes a random
execution of the system (W,U, S).

(2) If for every i ∈ [B(s(σ1))] it holds that R′(σi) = ⊥, then, with probability at
least 1− ε(s(σ1)), either RB(σ) = 1 or for some t ∈ [B(s(σ1))+1, 2B(s(σ1))] it holds that
U ′(σt) = 0, where here the probability refers to the execution suffix (σt+1, σt+2, ...,).

Analogously, U ′ is (B, ε)-strongly viable with respect to (U, S) if, for every W ∈ W and
every σ1 ∈ Ω, with probability at least 1 − ε(s(σ1)), for every t ≥ B(s(σ1)) it holds
that U ′(σt) = 1. We say that strong viability (resp., safety) holds perfectly if ε ≡ 0 (i.e.,
independent of the size parameter) holds in the viability (resp., safety) condition, and
in such a case we say that U ′ is B-strongly viable (resp., B-strongly safe).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:37

Note that the existence of a B-strongly safe and viable sensing function w.r.t (U, S) (as
in Definition 4.15) implies that (U, S) robustly achieves the goal with 2B errors (as in
Definition 4.16). Intuitively, B errors result from the delay of the viability condition,
and another B from the safety condition (i.e., the allowance to fail sensing if RB = 1).
If the sensing function is only (B, 1/3)-strongly safe and viable, then (U, S) robustly
achieves the goal with O(B) errors.

We comment that the foregoing definitions are simplified version of more appropri-
ate definitions that we only sketch here. For starters, note that the bounding function
B is used in Definition 4.15 in three different roles, which may be separated: (1) bound-
ing the expected number of errors of Type 1 (in Item 1), (2) bounding the expected
number of errors of Type 2 (in Item 2), and (3) determining the length of ⊥-runs that
is considered an error of Type 3. Thus, RB should be replaced by RB1,B2,B3

, where
B1, B2, B3 are the three separated bounding functions. In Definition 4.16, the bound-
ing function B is used in six different roles: three roles are explicit in the two items
analogous to the roles in Definition 4.15 and three are implicit in the use of RB (which
should be replaced by RB1,B2,B3

). Separating all these bounding functions is conceptu-
ally right, since the various quantities are fundamentally different. Still we refrained
from doing so for sake of simplicity.37

With the foregoing definitions in place, we are ready to present a refined version of
Theorem 4.6. The universal strategy postulated next achieves the goal with a bounded
number of errors, where the bound depends on the bounds provided for the strong
user-sensing functions.

THEOREM 4.17. (universal strategies (Theorem 4.6), revisited): Let G = (W, R) be
a compact goal, U be an enumerable set of user strategies, S be a set of server strategies,
and ε : N→ [0, 1/3] such that the following two conditions hold:

(1) For every S ∈ S there exists a user strategy U ∈ U , a user sensing function U ′ and
a bounding function B such that U ′ is (B, ε)-strongly viable with respect to (U, S) and
(B, ε)-strongly safe with respect to U and the server class S (i.e., for every S̃ ∈ S it holds
that U ′ is (B, ε)-strongly safe with respect to (U, S̃) (and G)). Furthermore, the mapping
U 7→ (U ′, B) is computable.
Let B denote the set of bounds that appear in the image of this mapping; that is, B =
{Bi : i ∈ N}, where Bi is the bound associated with the ith user strategy in U .

(2) One of the following two conditions hold.
(a) The (strong) viability condition holds perfectly (i.e., ε ≡ 0).
(b) For every i, it holds that Bi+1 < Bi/2ε.

Then, there exists an S-universal user strategy U such that for every S ∈ S there exists
B ∈ B such that (U, S) robustly achieves the goal G with O(B) errors, where the constant
in the O-notation depends on S. Furthermore, if the (strong) viability condition holds
perfectly and the complexity of the enumeration is negligible (when compared to the
complexity of the strategies in U), then, for every S ∈ S, the complexity of U is upper-
bounded by the complexity of some fixed strategy in U .

PROOF. Following the proof of Theorem 4.6, we first consider the case in which
both the (strong) viability and safety conditions hold perfectly; that is, ε ≡ 0 in (both
the viability and safety conditions of) Definition 4.16. Recall that the universal user
strategy U enumerates all Ui ∈ U , and consider the corresponding pairs (U ′i , Bi), where

37Likewise, it is conceptually correct to replace RB (and actually also R) in Definition 4.16 (resp., Defini-
tion 3.18) by a stricter condition that requires no errors at all after time B. Again, this was avoided only for
sake of simplicity.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 Goldreich et al.

U ′i is Bi-strongly safe (w.r.t Ui and S). Specifically, suppose that U starts emulating
Ui at round ti, and denote the system’s state at this round by σti . Then, for the first
bi ← Bi(s(σti)) rounds, strategy U just emulates Ui, and in any later round t > ti + bi
strategy U switches to Ui+1 if and only if U ′i(σt) = 0.

Note that Claims 4.6.1 and 4.6.2 remain valid, since we maintained the construc-
tion of U . However, we seek a stronger version of Claim 4.6.2. Let us first restate
Claim 4.6.1.

CLAIM 4.17.1. Suppose that U ′i is Bi-strongly viable and safe with respect to (Ui, S),
and consider a random execution of (W,U, S). Then, if this execution ever emulates Ui,
then it never switches to Ui+1. Furthermore, in this case, for ti and bi as above, it holds
that the number of errors (w.r.t the bound bi) occurring after round ti is at most 2bi.

The furthermore part follows by observing that Bi-strong viability implies that for
every t ≥ ti + bi it holds that U ′i(σt) = 1, whereas the Bi-strong safety implies that the
number of errors (w.r.t the bound bi) occurring after round ti + bi is at most bi (because
otherwise RBi evaluates to 0, and so U ′i(σt) = 0 must hold for some t > t′ > ti + bi,
where t′ is some time in which such a fault occurs).

CLAIM 4.17.2. Let i ≥ 1 and suppose that (U, S) does not robustly achieve the goal
with 4

∑
j∈[i]Bj errors. Consider a random execution of (W,U, S), and, for j ∈ {i, i+ 1},

let tj denote the round in which U started emulating Uj . Then, recalling that each U ′j
is Bj-strongly safe (w.r.t (Uj , S)), the expected number of errors (w.r.t the bound Bi) that
occur between round ti and round ti+1 is at most 4bi where bi

def
= Bi(s(σ1)). In particular,

(1) The expected cardinality of {t ∈ [ti, ti+1] : R′(σt) = 0} is at most 4bi.
(2) The expected cardinality of {t ∈ [ti, ti+1] : (∀t′ ∈ [t, t + bi]) R

′(σt′) = ⊥} is at most
4bi.

Combining the foregoing two claims with the hypothesis that for every S ∈ S there
exists a user strategy Ui ∈ U and a user-sensing function U ′i such that U ′i is Bi-strongly
viable and safe with respect to (Ui, S), it follows that (Ui, S) robustly achieves the goal
withB errors, whereB(s) = 2Bi(s)+4

∑
j∈[i−1]Bj(s). Note that indeedB(s) = O(Bj(s))

for some j ≤ i, where the constant in the O-notation depends on i (and hence on S).

PROOF. We proceed by induction on i (using a vacuous base case of i = 0). Let σ1 be a
global state such that the expected number of errors produced by a random execution
of the system starting at σ1 exceeds b = 4

∑
j∈[i]Bj(s(σ1)) (i.e., either |{t ∈ N : R′(σt) =

0}| > b or |{t ∈ N : (∀t′ ∈ [t, t + b]) R′(σt′) = ⊥}| > b). By the induction hypothesis, the
expected number of errors that occur before round ti is at most 4

∑
j∈[i−1]Bj(s(σ1)), and

some errors (w.r.t the bound bi) occur after round ti + bi, where bi = Bi(s(σ1)). That is,
there exists t > ti + bi such that either R′(σt) = 0 or for every t′ ∈ [t, t+ bi] it holds that
R′(σt′) = ⊥. In the first case the first (Bi-strong) safety condition (w.r.t S ∈ S) implies
that for some t′′ ∈ [t, t + bi] it holds that U ′i(σt′′) = 0, whereas in the second case the
second (Bi-strong) safety condition implies that for some t′′ ∈ [t′+1, t′+bi] ⊂ [t+1, t+2bi]
it holds that U ′i(σt′′) = 0. In both cases, the fact that U ′i(σt′′) = 0 (for t′′ > ti + bi) causes
U to switch to emulating Ui+1 at round t′′ + 1 (if not before). Hence, if t > ti + bi is set
to the first round that contains an error (following round ti + bi), then the number of
errors (w.r.t the bound bi) during the emulation of Ui is at most bi + (t′′ − t) ≤ 3bi. The
claim follows.

The foregoing analysis also applies when the (strong) safety condition holds only
with probability 1 − ε, where ε = ε(s(σ1)), because there are many opportunities to
switch from Ui, and each one is taken with probability at least 1 − ε. More precisely,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:39

except for the first bi + 4
∑
j∈[i−1]Bj(s(σ1)) errors, each error yields an opportunity

to switch from Ui soon, and each such opportunity is accounted for by at most 2bi
errors. Thus, in addition to the 3bi errors that occur when we have perfectly strong
safety, we may incur j ·2bi additional errors with probability at most εj , which gives an
expected number of additional errors that is upper-bounded by

∑
j∈N ε

j · 2bij < 2bi (as
ε ≤ 1/3). Hence, Claim 4.17.2 holds also in the general case, when replacing 4

∑
j∈[i]Bj

by 6
∑
j∈[i]Bj .

In contrast, in order to cope with imperfect (strong) viability (i.e., a strong viability
condition that holds with probability 1 − ε), we need to modify our strategy U . We
use the same modification (i.e., “repeated enumeration”) as at the end of the proof of
Theorem 4.6. Since each additional repetition occurs with probability at most ε, the
expected number of failures will remain bounded. Specifically, if Ui is repeated r ≥ 1
additional times, then the expected number of errors is at most

∑
j∈[i+r] 6Bj , and so the

expected number of errors is bounded by
∑
r≥0 ε

r ·
∑
j∈[i+r] 6Bj . Using the hypothesis

Bj+1 < (2ε)−1 · Bj , which implies Bi+r < (2ε)−r · Bi, we upper-bound this sum by
12

∑
j∈[i]Bj , and the main claim follows.

Regarding the furthermore claim, we note that the complexity of U is upper bounded
by the maximum complexity of the strategies U1, ..., Ui, where i is an index such that
(Ui, S) robustly achieves the goal. Indeed, by an extra hypothesis, the complexity of the
enumeration is dominated by the complexity of the emulation.

Theorem 4.17 versus Theorem 4.6. Indeed, Theorem 4.17 utilizes strongly safe user-
sensing functions, whereas Theorem 4.6 only utilizes weakly safe user-sensing func-
tions, but the conclusion of Theorem 4.17 is much more appealing: Theorem 4.17 pro-
vides an absolute (in terms of state size) upper bound on the number of errors incurred
by the universal strategy, whereas Theorem 4.6 only asserts that each infinite execu-
tion of the universal strategy incurs finitely many errors. We stress that a user strat-
egy that incurs (significantly) less errors should be preferred to one that incurs more
errors. This is demonstrated next.

Example 4.18. (goals with delayed feedback): Consider a goal G and classes of users
and servers as in Theorem 4.17, and suppose that B is a class of moderately growing
functions (e.g., constant functions or polynomials). Suppose that, for some huge func-
tion ∆ : N→ N (e.g., an exponential function), for every execution σ and every t ∈ N, the
user can obtain R′(σt) at round t+∆(s(σt)). This implies a very simple universal strat-
egy via a simple adaptation of the principles underlying the proof of Theorem 4.10, but
this strategy may incur Θ(∆) errors. In contrast, recall that the universal strategy
provided by Theorem 4.17 incurs O(B) errors, for some B ∈ B.

Refined helpfulness. The refined (or rather quantified) notion of achieving a goal sug-
gests a natural refinement of the notion of helpful servers. This refinement is actually
a restriction of the class of helpful servers, obtained by upper-bounding the number of
errors caused by the server (when helping an adequate user). That is, for any bound-
ing function B : N→ N, we may consider servers S that are not only U-helpful but can
rather be coupled with some U ∈ U such that (U, S) robustly achieves the goal with B
errors. We say that such servers are U-helpful with B errors.

4.4.2. Using relaxed viability. The notion of helpfulness with an explicitly bounded num-
ber of errors is not compatible with our current notion of bounded viability (cf. Def-
inition 4.16). The point is that B-strong viability allows failure indications to occur
only until time B, whereas helpfulness with B errors refers to the total number of

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 Goldreich et al.

errors. Wishing to utilize such helpful servers, we relax the notion of strong viability
accordingly.

Definition 4.19. (a relaxed notion of strong viability): Let G = (W, R), S, U and U ′

be as in Def. 3.18. For B : N → N and ε : N → [0, 1/3], we say that U ′ is (B, ε)-viable
with respect to (U, S) (and G) if, for every W ∈ W and every σ1 ∈ Ω, with probability
at least 1− ε(s(σ1)), the cardinality of {t ∈ N : U ′(σt) = 0} is at most B(s(σ1)). If ε ≡ 0
(i.e., the number of negative indications in sensing never exceeds the bound), then we
say that U ′ is B-viable.

Indeed, while helpfulness with B errors refers to the expected number of errors, the
notion of (B, ·)-viability refers to the probability that the number of failure indications
exceeds B. Needless to say, the latter bound is easily related to an upper bound on the
expected number of failures.

THEOREM 4.20. (Theorem 4.17, revisited): Let G = (W, R), U , S, ε and B be as
in Theorem 4.17, except that each sensing function U ′i is (Bi, ε)-viable (as per Defini-
tion 4.19) rather than (Bi, ε)-strongly viable (as per the viability condition in Defini-
tion 4.16). Then, there exists an S-universal user strategy U such that for every S ∈ S
there exists B ∈ B such that (U, S) robustly achieves the goal G with O(B2) errors, where
the constant in the O-notation depends on S. Furthermore, if B-viability holds (i.e., the
sensing function U ′i is (Bi, 0)-viable) and the complexity of enumerating U is negligible
(when compared to the complexity of the strategies in U), then, for every S ∈ S, the
complexity of U is upper-bounded by the complexity of some fixed strategy in U .

PROOF SKETCH. Following the proof of Theorem 4.17, we first consider the case in
which both the viability and safety conditions hold perfectly (i.e., ε ≡ 0, both in the
viability condition of Definition 4.19 and in the safety condition of Definition 4.16).
We modify the universal user strategy U used in the proofs of Theorems 4.6 and 4.17
such that it switches to the next strategy after seeing sufficiently many failure indi-
cations (rather than when seeing a failure indication after sufficiently many rounds).
Specifically, suppose that U starts emulating Ui at round ti, and denote the system’s
state at this round by σti . Then, strategy U emulates Ui until it encounters more than
bi ← Bi(s(σti)) rounds t > ti such that U ′i(σt) = 0 holds, and switches to Ui+1 once it
encounters the bi + 1st such round.

We shall show that Claims 4.17.1 and 4.17.2 remain essentially valid, subject to
some quantitative modifications. Specifically, Claim 4.17.1 is modified as follows.

CLAIM 4.20.1. Suppose that U ′i is Bi-viable and Bi-strongly safe with respect to
(Ui, S), and consider a random execution of (W,U, S). Then, if this execution ever emu-
lates Ui, then it never switches to Ui+1. Furthermore, in this case, for ti and bi as above,
it holds that the number of errors (w.r.t the bound bi) occuring after round ti is at most
bi + b2i .

The furthermore part follows by observing that Bi-viability implies that |{t > ti :
U ′(σt) = 0}| ≤ bi, whereas the Bi-strong safety implies that if more than bi errors
occur after round t′ > ti, then U ′i(σt′′) = 0 must hold for some t′′ ∈ [t′, t′ + bi] (since in
this case RBi evaluates to 0). Thus, if errors appear at rounds t′1, ..., t′m > ti such that
t′1 < t′2 < · · · < t′m, then failure indications must occur in rounds t′′1 , t′′2 , ..., t′′m−bi > ti
such that t′′j ∈ [t′j , t

′
j + bi] (for every j ∈ [m − bi]). Since at most bi of these intervals

may have a non-empty intersection, it follows that (m− bi)/bi ≤ bi. Thus, Claim 4.20.1
follows. As for Claim 4.17.2, it is modified as follows.

CLAIM 4.20.2. Let i ≥ 1 and suppose that (U, S) does not robustly achieve the goal
with 3

∑
j∈[i]B

2
j errors. Consider a random execution of (W,U, S), and, for j ∈ {i, i+ 1},

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:41

let tj denote the round in which U started emulating Uj . Then, recalling that each U ′j
is Bj-strongly safe (w.r.t (Uj , S)), the expected number of errors (w.r.t the bound Bi) that
occur between round ti and round ti+1 is at most 3B2

i (s(σ1)).

Combining Claims 4.20.1 and 4.20.2 with the hypothesis that for every S ∈ S there
exists a user strategy Ui ∈ U and a user-sensing function U ′i such that U ′i is Bi-viable
and Bi-strongly safe with respect to (Ui, S), it follows that (Ui, S) robustly achieves the
goal with B errors, where B(s) = 2B2

i (s) + 3
∑
j∈[i−1]B

2
j (s). Note that indeed B(s) =

O(B2
j (s)) for some j ≤ i, where the constant in the O-notation depends on i (and hence

on S).

PROOF SKETCH. Following the proof of Claim 4.17.2, we proceed by induction on
i. Let σ1 be a global state such that the expected number of errors produced by
a random execution of the system starting at σ1 exceeds 3

∑
j∈[i]B

2
j (s(σ1)). By the

induction hypothesis, the expected number of errors that occur before round ti is
at most 3

∑
j∈[i−1]B

2
j (s(σ1)), and so at least 3b2i errors occur after round ti, where

bi = Bi(s(σ1)). The first (bi + 1)bi errors must (by Bi-strong safety) cause more than bi
failure indications (i.e., rounds t > ti such that U ′(σt) = 0), which causes U to switch
to emulating Ui+1 as soon as bi + 1 such indications are encountered, which occurs at
most another bi rounds after the last detected error (again by Bi-strong safety). Hence,
the number of errors (w.r.t the bound bi) during the emulation of Ui is at most 3b2i , and
the claim follows.

As in the proof of Theorem 4.17, we need to extend the analysis to the general case
in which ε ≤ 1/3 (rather than ε = 0). The extension is analogous to the original one,
where here each repetition causes an overhead of O(B2) (rather than O(B)) errors.

Example 4.21. (solving computational problems, revised again): We consider the
same goal as in Example 4.12, but here we consider the possibility of achieving this
goal when interacting with an arbitrary server that is U-helpful with a polynomi-
ally bounded number of errors (rather than interacting with an arbitrary D-solver).
Recall that we consider the multi-session goal of solving instances (selected non-
deterministically by the world) of a decision problem, D0, and U denotes the class of
probabilistic polynomial-time user strategies. This is a multi-session version of the
goal studied by Juba and Sudan [2008a], and their solution can be nicely cast in the
current framework. Specifically:

— As shown implicitly in [Juba and Sudan 2008a], if both D0 and its complement
have interactive proof systems (cf. [Goldwasser et al. 1989]) in which the designated
prover strategy can be implemented by a probabilistic polynomial-time oracle machine
with access to D0 itself, then, for some polynomial B, there exists a sensing function
that is B-viable and (B, 1/3)-strongly safe with respect to the class of U-helpful with B
errors servers.38

The proof of the foregoing claim amounts to the user invoking the interactive proof
system, while playing the role of the verifier and using the helpful server in order to
implement the designated prover strategy. For details, see [Juba and Sudan 2008a].

38In fact, strong safety holds with respect to all possible servers. This fact follows from the unconditional
soundness of the interactive proof system (i.e., soundness holds no matter which strategy is used for the
cheating prover).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 Goldreich et al.

Recall that adequate interactive proof systems exists for PSPACE-complete and some
problems in SZK that are believed not to be in P (cf. [Lund et al. 1992; Shamir 1992]
and [Goldreich et al. 1991], respectively).39

— By invoking Theorem 4.20 we obtain an S-universal user strategy, where S de-
notes the class of all U-helpful servers. Furthermore, for every S ∈ S, when interacting
with S this universal strategy can be implemented in probabilistic polynomial-time.

Analogous reasoning can be applied to other classes of user strategies; for example
log-space implementable strategies. For a general treatment, confined to the one-shot
setting, the interested reader is referred to [Juba 2011, Chap. 5].

4.5. On the limitations of universal users and related issues
In this section we justify some of the limitations of the positive results presented in
prior sections. Specifically, we address the overhead in Theorem 4.17 and the fact that
the strong sensing functions of Example 4.12 are also safe with respect to non-helpful
servers.

4.5.1. On the overhead in Theorem 4.17. Recall that the number of errors incurred by
the universal user asserted in Theorem 4.17 (as well as in Theorem 4.6) is at least
linear in the index of the server that it happens to use (with respect to a fixed ordering
of all servers in the class). Thus, the number of errors is exponential in the length
of the description of this server (i.e., the length of its index). We shall show that this
overhead (w.r.t a user tailored for this server) is inherent whenever the universal user
has to achieve any non-trivial goal with respect to a sufficiently rich class of servers.

Loosely speaking, a goal is nontrivial if it cannot be achieved without the help of
some server. Since our basic framework always includes a server, we model the absence
of a “real” server by referring to the notion of a trivial server (i.e., a server that sends
empty messages in each round).

Definition 4.22. (nontrivial goals): Let T denote a server, called trivial, that sends
empty messages in each round. We say that a compact goal G = (W, R) is nontrivial
w.r.t. a class of users U if for every user U ∈ U there is a W ∈ W such that the temporal
decision function R′ never outputs 1 in the execution (W,U, T).

Note that the notion of nontrivial is more restricted than the requirement that (U, T)
does not achieve the goal. Nevertheless, the stronger requirement, which asserts that
the temporal decision function R′ never rules that the execution is tentatively success-
ful, is very natural.

As for the class of “sufficiently rich” class of servers, we consider here one such pos-
sible class (or rather a type of class). Specifically, we consider servers that become
helpful (actually stop sending empty messages) only as soon as they receive a mes-
sage from the user that fits their password. Such “password protected” servers are
quite natural in a variety of settings. Actually, for sake of robustness (both intuitive
and technical)40 we postulate that the password be check at every round (rather than

39Recall that we need interactive proof systems in which the designated prover strategy is relatively efficient
in the sense that it can be implemented by a probabilistic polynomial-time oracle machine with access to the
problem itself. Such interactive proof systems are known, e.g., for Graph Isomorphism problem [Goldreich
et al. 1991], but it seems unlikely that all problems in IP (or even NP) have such proof systems [Bellare
and Goldwasser 1994].
40In order for user strategies to robustly achieve goals with password-protected servers, the user must
be ready to provide the password when started from any arbitrarily chosen state (as required by Defini-
tion 3.14). The most straightforward and natural way to ensure this is for the user to send the password
on every message to the server. Thus, a natural type of password-protected servers that permits users to
robustly achieve their goals consists of servers that expect all messages to be prepended by their password.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:43

only in the first round). That is, in each round, the server will check that the message
received is prepended with a string that matches its password.

Definition 4.23. (password-protected servers): For every server strategy S and
string x ∈ {0, 1}∗, the password-protected version of S with password x (x-protected
version of S), denoted Sx, is the server strategy that upon receiving a message of the
form xy, updates its state and sends messages as S would upon receiving y. Otherwise,
Sx sends the empty messages to all parties, like the trivial server would, and does not
update the state.

Roughly speaking, the reason password-protected servers demonstrate the need for
substantial overhead is that, when the user does not know the password, the user
has no choice but to try all possible passwords, which implies a lower bound on the
number of errors. For this demonstration (of overhead) to be meaningful, we should
show that password-protected versions of helpful servers are essentially as helpful
as their unprotected counterparts. Indeed, for starters, we establish the latter claim,
where this holds with respect to classes of user strategies that are closed under a
simple transformation (i.e., prepending of adequate passwords).

PROPOSITION 4.24. (password-protected versions of helpful servers are helpful):
Let U be a class of user strategies such that, for any U ∈ U and any string x ∈ {0, 1}∗,
there exists a strategy Ux ∈ U that acts as U except that it appends x to the beginning
of each message that it sends to the server. Then, for every U-helpful server S and every
password x ∈ {0, 1}∗, the x-protected version of S, denoted Sx, is U-helpful. Further-
more, if (U, S) (robustly) achieves the goal, then (Ux, Sx) (robustly) achieves the goal
with the same number of errors as (U, S).

PROOF. Then, since S is U-helpful, there exists U ∈ U such that (U, S) robustly
achieves the goal. Since (Ux, Sx) send the same messages to the world as (U, S), it holds
that (Ux, Sx) also robustly achieves the goal and incurs precisely the same number of
errors as (U, S). Since Ux ∈ U , it follows that Sx is U-helpful.

Having established the helpfulness of password-protected versions (of helpful
servers), we prove a lower bound on the number of errors incurred when achieving
(nontrivial) goals by interacting with such servers.

THEOREM 4.25. (on the overhead of achieving nontrivial goals with password-
protected servers): Let G = (W, R) be a nontrivial compact goal and S be helpful with
respect to G. Then, for every user U and integer `, there exists an `-bit string x such that
(U, Sx) does not achieve G in less than 2(`−3)/2 errors, where Sx denotes the x-protected
version of S.

Note that the fact that the lower bound has the form Ω(2`/2) (rather than Ω(2`)) is due
to the definition of errors (cf. Definition 4.15).41

PROOF. Let any user strategy U be given and let T be a trivial server. Since G is
nontrivial, there exists W ∈ W such that the temporal decision function R′ never eval-
uates to 1 in a random execution of (W,U, T). For starters, we assume (for simplicity)

41Indeed, the trivial server that prevents R′ from ever evaluating to 1 may also be viewed by Definition 4.15
as making only

√
2` errors (for some adequate R′). In particular, we may consider the following behavior of

R′ for the case that the server never sends a message to the world. For every i = 1, 2, ..., and j ∈ [22i−2, 22i],
in round j the value of R′ equals 0 if j is a multiple of 2i and equals ⊥ otherwise. Then, for every even
`, the first 2` rounds contain no 2`/2-long run of ⊥, whereas the total number of zeros in these rounds is∑`/2

i=1
2i = O(2`/2).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 Goldreich et al.

that in such random executions R′ always evaluates to 0. Consider, a random execu-
tion of (W,U, Sx), when x is uniformly selected in {0, 1}`, Then, with probability at least
1−m ·2−`, the user U did not prepend the string x to any of the messages it sent in the
first m rounds. In this case, the m-round execution prefix of (W,U, Sx) is distributed
identically to the m-round execution prefix of (W,U, T), which means that it generates
m errors. Using m = 2`−1 it follows that, for a uniformly selected x ∈ {0, 1}`, the ex-
pected number of errors in a random execution of (W,U, Sx) is at least 2`−2. Hence,
there exists a string x ∈ {0, 1}` such that (U, Sx) does not achieve G in less than 2`−2

errors.
In the general case (i.e., when considering ⊥-values for R′), we may infer that there

exists a string x ∈ {0, 1}` such that, with probability at least 1−m · 2−`, the temporal
decision function R′ does not evaluate to 1 in the first m rounds of a random execution
of (W,U, Sx). In this case, this execution prefix contains at least

√
m errors (see the two

items of Definition 4.15), and the theorem follows (by setting m = 2`−1).

Discussion. Combining Theorem 4.25 and Proposition 4.24, we demonstrate the ne-
cessity of the error overhead incurred by the universal strategy of Theorem 4.17.
Specifically, the latter strategy must work for server and user classes that are derived
via Proposition 4.24. Now, Theorem 4.25 asserts that this class of 2` servers contains a
server that causes an overhead that is exponential in `, which in turn is closely related
to the length of the description of most servers in this class.

4.5.2. On the non-triviality of strong sensing functions. Recall that the existence of a S-
universal strategy implies the existence of a sensing function that is safe with respect
to S (see Proposition 4.5). However, this sensing function is trivial (i.e., it is identi-
cally 1), and its safety with respect to S just follows from the fact that the S-universal
strategy achieves the goal when coupled with any server in S. Clearly, this safety prop-
erty may no longer hold with respect to servers outside S, and specifically with respect
to servers that are not helpful at all. We believe that sensing functions that are also
safe with respect to a wider class of servers are desirable. Also, it is desirable to have
sensing functions that are strongly safe, because such functions offer bounds on the
number of errors made by the universal strategy (see Theorem 4.17).

Turning to the cases in which we designed nontrivial strong sensing functions – i.e.,
those in Example 4.12 – we observe that these sensing functions were actually safe
with respect to any server. We show now that this is no coincidence: It turns out that
a strong sensing function with respect to a sufficiently rich class of helpful servers
is actually safe with respect to any server. In other words, if U ′ is strongly safe with
respect to S, which may contain only U-helpful servers, then U ′ is strongly safe with
respect to any server (including servers that are not helpful to any user). Thus, a
strongly safe sensing function cannot be trivial.

As we observed in our discussion of password-protected servers, an individual
password-protected server poses no particular challenge to the right user strategy.
The “challenge” of password-protection only arises when the user is faced with an en-
tire class of servers, which use different possible passwords; the user is then forced to
search through all possible strings until it hits upon the right one. The phenomenon
that forces strong sensing functions to guard against all servers (including totally un-
helpful ones) is similar. Considering a class of helpful servers that are each helpful
when they communicate with users that send sufficiently long messages and may be-
have arbitrarily otherwise, we show that (strong) safety with respect to this class im-
plies (strong) safety with respect to all servers. Specifically, for each user strategy U ,
we will consider the class pad(U) of all user strategies that prepend messages of U by
a sufficiently long prefix, and show that (strong) safety with respect to the class of all
pad(U)-helpful servers implies (strong) safety with respect to all servers.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:45

THEOREM 4.26. (strong safety w.r.t helpful servers implies same w.r.t all servers):
Let G = (W, R) be a compact goal, which is achievable by the pair (U, S). Let padi(U)
denote a user strategy that prepends 0i−11 to each message sent by U , and suppose that
U ′ is (B, ε)-strongly safe with respect to U and each {padi(U) : i ∈ N}-helpful server (and
G). Then, U ′ is (B, 2ε)-strongly safe with respect to the user U and every server (and G).

PROOF. Suppose, towards the contrary, that there exists an arbitrary server S∗ such
that U ′ is not (B, 2ε)-strongly safe with respect to (U, S∗) andG. The strong safety prop-
erty implies that the sensing failure of U ′ is witnessed by finite prefixes of the relevant
executions. Specifically, for some W ∈ W and some initial state σ1, with probability
greater than 2ε, a random execution of (W,U, S∗) starting at σ1 contains a finite pre-
fix that witnesses the sensing failure. Recall that there are two cases depending on
whether R′(σ1) = 0 or R′(σ1) = ⊥.

Starting with the first case, we note that with probability greater than 2ε(s(σ1)), the
random execution σ is such that U ′(σi) = 1 for all i ≤ B(s(σ1)) and RB(σ) = 0. Note
that the first event depends only on the B-long prefix of σ, denoted σ[1,B]. Thus, with
probability at least 2ε, this prefix is such that (1) U ′ is identically 1 on all its states,
and (2) with positive probability this prefix is extended to a random execution that is
unsuccessful (per RB). Fixing any such prefix, we note that event (2) is also witnessed
by a finite prefix; that is, with positive probability, a random extension of this prefix
contains a (longer) prefix that witnesses the violation of RB . Using the fact that the
latter event refers to a countable union of fixed prefix events, we conclude that there
exists ` ∈ N such that with positive probability the said violation is seen in the `-step
prefix. Furthermore, by viewing the probability of the former event as a limit of the
latter events, we can make the probability bound retain 90% of its original value. The
same process can be applied across the various B-long prefixes, and so we conclude
that there exists an ` ∈ N such that, with probability at least 1.5ε, a violation is due to
the `-long prefix of a random execution. Similar considerations apply also to the second
aforementioned case (where R′(σ1) = ⊥).

Next, we note that we can upper bound the length of the messages that are sent by
U in the first ` steps of most of these random executions. That is, there exists an i ∈ N
such that, with probability at least ε, the sensing function U ′ fails in a random `-step
execution prefix during which U sends messages of length at most i. At this point we
are ready to define a helpful server that also fails this sensing function.

Firstly, we consider the strategy Ũ = padi+1(U), and define a hybrid strategy S̃∗

such that S̃∗ behaves like S∗ on messages of length at most i and behaves more like S
otherwise. Specifically, upon receiving a message of length greater than i, the strategy
S̃∗ omits the first i+1 bits, feeds the result to S, and answers as S does. Clearly, (Ũ , S̃∗)

achieves the goal G, and so S̃∗ is pad(U)-helpful. On the other hand, by the foregoing
argument, it is the case that U ′ fails with probability at least ε in a random execution
of (W,U, S̃∗). Thus, U ′ is not (B, ε)-strongly safe with respect to U and S̃∗ (and G),
which contradicts our hypothesis regarding safety with respect to all helpful servers
(or rather all {padj(U) : j ∈ N}-helpful servers). The theorem follows.

5. EXTENSIONS
In this section, we discuss various natural augmentations of our basic model including
the treatment of varying state sizes (see Section 5.1), generalizations of multi-session
goals (see Section 5.2), notions of resettable servers (see Section 5.3), and partial ro-
bustness (see Section 5.4).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46 Goldreich et al.

5.1. Varying state sizes
Our basic treatment, provided in Sections 3 and 4, postulates that the size of the
various states remains invariant throughout the execution. This postulate was made
mainly for sake of simplicity, and we waive it here both for sake of generality and be-
cause the generalization seems essential to an appealing result that appears in §5.3.2.

5.1.1. Extending the definitional treatment. Recall that the size of the various states in
the execution is used only as a basis for defining various bounds, which are stated as
functions of the state’s size. Given that the state’s size may change, the question that
we face is how to express these bounds in such a case.42 Recall that we use bounds of
two types.

(1) Bounds that determine the length of various intervals, including the length of
intervals in which the temporal decision is suspended (i.e., R′ = ⊥) or the delay of
sensing (e.g., in the definition of safety). For example, both types of delays appear in
(Item 2 of) Definition 3.18 (which refers to strong sensing).
Since such bounds refer to some “transient” events (i.e., a state in which R′ = 0 or the
first state in a ⊥-run under R′), it is natural to keep them expressed in terms of the
size of the corresponding state (in which the event occurs).

(2) Bounds that determine the total number of various events, including the number
of allowed errors and/or detection failures (as in Definition 4.15 and Definition 4.19,
respectively).
Since these bounds are “global” in nature, it makes no sense to associate them with
any single event (or state or size). Instead, we may view each individual bad event
(i.e., an error and/or detection failure) as contributing to a general pool, and weight its
contribution with reference to the relevant size. (See Definition 5.1.)

In accordance with the foregoing discussion, the definitions of sensing functions (i.e.,
Definition 3.18 and, needless to say, Definition 3.16) remain intact (although the size
of the various states in an execution may vary). We stress that, since our universal
strategies refer to these bounds, it is important to maintain our postulation by which
the user knows the size of the current (global) state.43

We now turn to the treatment of global bounds, like the bounds on the total number
of errors (in Definition 4.15). Recall that Item 1 in Definition 4.15 states that the ex-
pected cardinality of {t ∈ N : R′(σt) = 0} is at most B(s(σ1)), for every initial state σ1.
However, when the size of states may vary, it makes little sense to bound the number of
errors with reference to the size of the initial state. Instead, we may consider an error
at state σt as contributing an amount proportional to 1/B(s(σt)) (towards the violation
of the “error bound”) and say that a violation occurs if the sum of all contributions
exceeds 1.

Definition 5.1. (varying size version of Definition 4.15): LetG = (W, R) be a compact
goal and R′ : Ω→ {0, 1,⊥} be as in Def. 3.9. For B : N→ N, we say that a pair of user-
server strategies, (U, S), achieves the goalG with B errors if, for everyW ∈ W, a random
execution σ = (σ1, σ2, ...) of the system (W,U, S) satisfies the following two conditions:

(1) The expected value of the sum
∑
t∈N:R′(σt)=0

1
B(s(σt))

is at most 1.
(2) The expected value of the sum

∑
t∈N:(∀t′∈[t,t+B(s(σt))]) R′(σt′)=⊥

1
B(s(σt))

is at most 1.

42While we believe that the definitional choices made here (i.e., in Section 5.1) are reasonable, we are far
from being convinced that they are the best possible.
43Indeed, we also relied on this postulation in the fixed-size case, since it was used there in the same way.
However, in the current context the state may change all the time, and the user should be aware of these
changes (at least whenever it needs to determine the values of these bounds).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:47

If σ is an execution in which the bounds corresponding to the foregoing conditions
are both satisfied, then we write RB(σ) = 1. Finally, if σ is an execution such that
R′(σt) = 0 or (∀t′∈ [t, t+ B(s(σt))]) R

′(σt′) = ⊥, then we say that σ contains an error in
round t.

Note that each individual bad event in Item 2 is defined with respect to the size at
the corresponding time, and (like in Item 1) its contribution is defined with respect to
the size at the corresponding time. However, in both items, the condition refers to the
aggregate contribution, where each event may contribute a different amount to this
sum. Observe that in the case that the state remains fixed throughout the execution,
Definition 5.1 coincides with Definition 4.15.

A similar modification should be applied to the definition of robustly achieving a
goal. Consequently, the refined definition of strong safety (i.e., Definition 4.16) is up-
dated by merely postulating that RB is as defined in Definition 5.1 (rather than as in
Definition 4.15). Lastly, we generalized the definition of relaxed viability (i.e., Defini-
tion 4.19)44 analogously to the foregoing modification (i.e., that yielded Definition 5.1).

Definition 5.2. (varying size version of Definition 4.19): Let G = (W, R), S, U and U ′
be as in Def. 3.18. For B : N → N and ε ∈ [0, 1/3], we say that U ′ is (B, ε)-viable with
respect to (U, S) (and G) if, for every W ∈ W and every σ1 ∈ Ω, with probability at
least 1− ε, the value of the sum

∑
t∈N:U ′(σt)=0

1
B(s(σt))

is smaller than 1. If ε = 0, the we
say that U ′ is B-viable.

As commented in §4.4.1, the foregoing definitions are simplified versions of more gen-
eral definitions that use different bounding functions for the various bounds that un-
derly these definitions.

5.1.2. Extending the (fixed-size) universality results. The universality results stated in Sec-
tion 4 can be generalized to the context of varying sizes, where we refer to the gener-
alized definitions presented in §5.1.1. Actually, we can prove these generalized results
only for goals in which the state size does not change dramatically from one round to
the next one. For simplicity, we only consider one concrete case, in which the size can
change at each round by at most one unit. (Note that goals that allow arbitrary changes
in the state sizes can be emulated by the foregoing restricted goals by introducing an
adequate number of dummy rounds.) Similarly, we consider only small bounding func-
tions, while larger bounds can be handled by artificially increasing the size measure
(which is an arbitrary function of the states).

THEOREM 5.3. (varying size version of Theorem 4.20): Let G = (W, R), U , S, ε and
B be as in Theorem 4.20, except that here we refer to the varying-size generalization of
the notions of achieving and sensing (and in particular to replacing Definition 4.19 by
Definition 5.2). Suppose that G is such that in each execution σ = (σ1, σ2, ...) and at
every time t it holds that |s(σt+1) − s(σt)| ≤ 1. Further suppose that for every B ∈ B it
holds that B(s + d) ≤ B(s) + (d/2), and that for every two functions in B it holds that
one of them dominates the other (i.e., for every B1, B2 ∈ B and s, s′ ∈ N, if B1(s) < B2(s),
then B1(s′) ≤ B2(s′)). Then, there exists an S-universal user strategy U such that for
every S ∈ S there exists B ∈ B such that (U, S) robustly achieves the goal G with O(B2)
errors, where the constant in the O-notation depends on S. Furthermore, if B-viability
holds (i.e., the sensing function U ′i is (Bi, 0)-viable) and the complexity of enumerating

44In order to avoid a possible controversy, we state Definition 5.2 only for constant values of ε, whereas
Definition 4.19 allowed any ε : N → [0, 1/3]. Note that ε = 0 and ε = 1/3 are indeed the most important
cases (cf. Definition 3.18). Nevertheless, we mention that we believe that when allowing ε to vary, it is most
natural to apply it to the initial state (indeed, as in Definition 4.19).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48 Goldreich et al.

U is negligible (when compared to the complexity of the strategies in U), then, for every
S ∈ S, the complexity of U is upper-bounded by the complexity of some fixed strategy in
U .

Recall that by saying that a “goal is achieved with a certain number of errors” we mean
that the expected contribution of all errors is bounded by 1, where the contribution of
each error is “normalized” with respect to the relevant size (as per Definition 5.1).

PROOF SKETCH. We follow the outline of the proof of Theorem 4.20, while adapting the
“accounting of failure indications.” Recall that, in that proof (and while in the case of
ε ≡ 0), we introduced a universal user strategy U that switches from the user strategy
Ui to the next strategy (i.e., Ui+1) after seeing sufficiently many failure indications,
where “sufficiently many failures” meant a number that exceeds a predetermined
bound that was expressed in terms of the fixed size (of states). Here, sufficiently many
failures will mean an accumulated contribution that exceeds 1, where each contribu-
tion is normalized with respect to the relevant size (as per Definition 5.2). Specifically,
suppose that U starts emulating Ui at round ti, then strategy U emulates Ui until a
time ti+1 such that the sum

∑
t∈(ti,ti+1]:U ′i(σt)=0

1
Bi(s(σt))

exceeds 1, and switches to Ui+1

once the latter event occurs.

We shall show that Claims 4.20.1 and 4.20.2 remain essentially valid, when modified
in accordance to the relevant new measures. Specifically, Claim 4.20.1 is modified as
follows.

CLAIM 5.3.1. Suppose that U ′i is Bi-viable and Bi-strongly safe with respect to
(Ui, S), and consider a random execution of (W,U, S). Then, if this execution ever emu-
lates Ui, then it never switches to Ui+1. Furthermore, in this case, letting E denote the set
of rounds containing errors (as in Definition 5.1) it holds that

∑
t∈E:t>ti

1
4B2

i
(s(σt))

≤ 1,
where ti is as above.

PROOF SKETCH. As in the case of Claims 4.17.1 and 4.20.1, the main part only relies
on Bi-viability and follows from the construction of U . The furthermore part follows
by observing that Bi-viability mandates a upper bound on the contribution of failure
indications (w.r.t U ′i), whereas theBi-strong safety condition translates the total contri-
bution of errors (w.r.t R′) to a lower bound on the the contribution of failure indications
(w.r.t U ′i). Specifically, suppose towards the contradiction that

∑
t∈E:t>ti

1
B2

i
(s(σt))

> 4.
Consider b > ti such that both

∑
t∈E∩(ti,b]

1
B2

i
(s(σt))

> 2 and
∑
t∈E:t>b

1
B2

i
(s(σt))

> 1 hold,
and let E′ = {t ∈ E : t ∈ (ti, b]}. Now, by the Bi-strong safety condition, for every t′ ∈ E′
there exists t′′ ∈ [t′, t′ + Bi(s(σt′))] such that U ′i(σt′′) = 0 (because RBi(σt′) evaluates
to 0). Let us denote the corresponding mapping by π : E′ → (N \ [ti]); that is, for every
t′ ∈ E′ it holds that π(t′) ∈ [t′, t′ +Bi(s(σt′))] and U ′i(σπ(t′)) = 0. Then:∑

t>ti:U ′i(σt)=0

1

Bi(s(σt))
≥

∑
t∈π(E′)

1

Bi(s(σt))

=
∑
t′∈E′

1

|π−1(π(t′))|
· 1

Bi(s(σπ(t′)))

≥
∑
t′∈E′

1

2B2
i (s(σπ(t′)))

where the last inequality follows from the fact that |π−1(t′′)| ≤ 2Bi(s(σt′′)), which
in turn follows by combining π−1(t′′) ⊆ {t′ ∈ [t′′] : t′ + Bi(s(σt′)) ≥ t′′} with

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:49

|{t′ ∈ [t′′] : t′ + Bi(s(σt′)) ≥ t′′}| ≤ 2Bi(s(σt′′)), where the last fact relies on two of
the technical conditions of the theorem.45 Using

∑
t′∈E′

1
2B2

i
(s(σt′))

> 1, we infer that∑
t>ti:U ′i(σt)=0

1
Bi(s(σt))

> 1, which causes the execution to switch to Ui+1, in contradic-
tion to the main part. The furthermore part follows.

Regarding Claim 4.20.2, it is modified as follows.

CLAIM 5.3.2. Let i ≥ 1 and suppose that (U, S) does not robustly achieve the goal
with 6imaxj∈[i]B

2
j errors.46 That is, letting E be as in Claim 5.3.1, it holds that the

expected value of
∑
t∈E

1
maxj∈[i]{B2

j
(s(σt))} exceeds 6i. Consider a random execution of

(W,U, S), and let ti, ti+1 be as above. Then, recalling that each U ′j is Bj-strongly safe
(w.r.t (Uj , S)) it holds that the expected value of

∑
t∈E:t∈(ti,ti+1]

1
B2

i
(s(σt))

is at most 6.

Combining Claims 5.3.1 and 5.3.2 with the hypothesis that for every S ∈ S there exists
a user strategy Ui ∈ U and a user-sensing function U ′i such that U ′i is Bi-viable and Bi-
strongly safe with respect to (Ui, S), it follows that (Ui, S) robustly achieves the goal
with B errors, where B(s) = 6imaxj∈[i]{B2

j (s)}.

PROOF SKETCH. Following the proof of Claim 4.20.2, we proceed by induction on i.
Let σ1 be a global state such that the expected value of

∑
t∈E

1
maxj∈[i]{B2

j
(s(σt))} exceeds

6i. By the induction hypothesis, the expected value of
∑
t∈E:t≤ti

1
maxj∈[i−1]{B2

j
(s(σt))} is

at most 6(i − 1), and so the expected value of
∑
t∈E:t∈(ti,ti+1]

1
B2

i
(s(σt))

is at least 6. By
Bi-strong safety, for each of these t ∈ E ∩ (ti, ti+1] there exists t′ ∈ [t, t+Bi(s(σt))] such
that U ′i(σt′) = 0, and by an accounting similar to the one in the proof of Claim 5.3.1
it follows that

∑
t∈(ti,ti+1]:U ′i(σt)=0

1
Bi(s(σt))

> 3, which causes U to switch to emulating
Ui+1 before ti+1 (in contradiction to the definition of ti+1). The claim follows.

As in the proof of Theorem 4.17, we need to extend the analysis to the general case
in which ε ≤ 1/3 (rather than ε = 0). The extension is analogous to the original one,
where (as in the proof of Theorem 4.20) each repetition causes an overhead of O(B2)
errors.

5.2. Generalized multi-session goals
In this section we consider two (mostly orthogonal) generalizations of the notion of
multi-session goals. The first generalization, which refers to concurrent sessions (and
appears in §5.2.1), is presented merely as a framework towards future study. The sec-
ond generalization, which supports “user exploration” sessions (and appears in §5.2.2),
seems essential to the result presented in §5.3.2. For sake of simplicity, we do not com-
bine these two generalizations (although such a combination makes sense), but rather
present each generalization with reference to the basic definition of multi-session goals
(i.e., Definition 3.10).

In relation to the treatment of state sizes in Section 5.1, it is natural to comment on
the state sizes in multi-session goals. It is natural to postulate that, in the basic for-
mulation (i.e., Definition 3.10), the state size remains invariant during each session,

45Specifically, using |s(σt′)− s(σt′′)| ≤ |t′ − t′′| and Bi(s+ d) ≤ Bi(s) + (d/2), we upper-bound |{t′ ∈ [t′′] :
t′ +Bi(s(σt′)) ≥ t′′}| by |{t′ ∈ [t′′] : t′ +Bi(s(σt′′)) + (t′′ − t′)/2 ≥ t′′}|.
46Here we use the technical hypothesis by which for every two functions in B it holds that one of them
dominates the other. Hence, maxj∈[i]{B2

j } is well defined, and if B1(s) < B2(s) for some s ∈ N then
B1(s′) ≤ B2(s′) holds for all s′ ∈ N.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:50 Goldreich et al.

and is thus determined by the start-session state of this session. In the case of concur-
rent sessions (see §5.2.1) it is natural to define size as a function of the sizes associated
with all active sessions (e.g., the maximum size and the sum of sizes seem like natural
choices).

5.2.1. Concurrent sessions. Our basic formulation of multi-session goals (see Defini-
tion 3.10) mandates that the current session ends before any new session can start. A
more general formulation, which allows concurrent sessions, follows.

Definition 5.4. (concurrent multi-session goals, sketch): A goal consisting of a non-
deterministic strategyW and a referee R is called a concurrent multi-session goal if the
following conditions hold.

(1) The world’s states: The local states of the world consist of (non-empty) sequences
of pairs, where each pair is called a session state and has a form as postulated in
the first condition of Definition 3.10; that is, each session state is a pair consisting
of an index and a contents, and belongs to one of three sets of session states called
start-session states, end-session states, and intermediate session states. The initial local
state corresponds to the single pair (0, λ), and belongs to the set of end-session states.

(2) The referee verdict depends only on the end-session states: The referee R is com-
pact. Furthermore, the corresponding function R′ evaluates to ⊥ if and only if the
current state contains no end-session state. Otherwise, the value of R′ is a conjunction
of the values of some Boolean predicate R′′ that is applied to all the end-session states
that appear in the current state.

(3) Starting new sessions: At any round, the world may start an arbitrary number
of new sessions. This is done by moving non-deterministically to a state that contains
a list of start-session states, each having an index that does not appear in the previous
list of session states.47 The contents of each of these new session states is determined
by the world based solely on the indices of the existing sessions (and is invariant of
their contents; cf. Condition 3 of Definition 3.10).

(4) Execution of the current active sessions: In addition to the above, the world takes
a move in each of the active sessions that are listed in the current state, where a
session is called active if it is not in an end-session state. The world’s movement in
each such session is probabilistic and is independent of the index as well as of the
actual world strategy (cf. Condition 4 of Definition 3.10). Furthermore, this movement
maintains the index of the session.

Note that the state maintains the list of all non-active sessions (i.e., sessions that
reached a end-session state). An alternative formulation may omit the non-active ses-
sions from the state, and maintain instead an explicit counter that represents the
number of sessions started so far.

5.2.2. Exploration sessions and other effects on the world. Our basic formulation of multi-
session goals (see Definition 3.10) mandates that the world determines the initial state
of new sessions obliviously of any previous actions of the parties (i.e., actions of these
parties in prior sessions). This is an artifact of the postulate that the world’s move
at an end-session state only depends on the index of that state (i.e., the index of the
last session), which means that whatever effects the user and server have had on the
world (during the last session) are dissolved at the beginning of a new session. This
somewhat stringent postulate was made in order to develop a notion of sessions that
are independent of one another (from the world’s point of view). In contrast, at the ex-
treme, allowing the world’s actions (in each session) to depend on the entire history col-

47Without loss of generality, this index may be the smallest integer that does not appear in that list.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:51

lapses such multi-session goals to general compact goals. An intermediate case, which
seems very appealing, refers to multi-session executions in which the dependence of
the world’s actions on the history of prior sessions is limited. Specifically, we restrict
the dependence of the world’s actions on the history of prior sessions to the selection of
the contents of the initial state in new sessions. Furthermore, we introduce a frame-
work that allows us to consider cases where the selection of the initial state (of the new
session) is further restricted.

In addition to the general appeal of the new framework, it facilitates the introduction
of the notion of “exploration sessions”: these are sessions that are actually initialized
by the user with the aim of assisting it to later perform better in “real” sessions that
are invoked by the world, as usual. Note that such sessions can be easily modeled (by
the new framework) by having the user indicate at the end of the current session that
it wishes to perform such an exploration and even have the world behave as if it has
selected a specific contents for the initial state of the next session.48

Definition 5.5. (history-dependent multi-session goals, sketch): Let H be a family
of functions, representing the allowed history-dependent actions of the world when
initiating a new session. A goal consisting of a non-deterministic strategy W and a
referee R is called an H-dependent multi-session goal if the following conditions hold.

(1) The world’s states: As in Definition 3.10, the local states of the world are parti-
tioned into three non-empty sets consisting of start-session states, end-session states,
and (intermediate) session states. Each of these states is a pair consisting of a record
(representing a digest of the history of prior sessions) and a contents (representing the
actual state within the execution of the current session).49 The initial local state corre-
sponds to the pair (λ, λ), and belongs to the set of end-session states.

(2) The referee behaves like in Definition 3.10; that is, the corresponding temporal
decision function R′ evaluates to ⊥ if and only if the current state is not an end-session
state.

(3) Starting a new session: When being in an end-session state, the world moves
non-deterministically to a start-session state. Furthermore, like in Definition 3.10, this
move is independent of the actual contents of the current end-session state. That is, for
each actual world strategy W ∈ W, W is invariant over all possible end-session states
that have the same record, and it fits some function in H; that is, for each W ∈ W
there exists h ∈ H such that for every end-session state (r, σ′) ∈ {0, 1}∗ × Ω, it holds
that W (r, σ′) = h(r) ∈ {0, 1}∗ × Ω.50

Optional (as in Definition 3.10): The world can also notify the user that a new session
is starting, and even whether or not the previous session was completed successfully
(i.e., with R′ evaluating to 1). Analogous notifications can also be sent to the server.

(4) Execution of the current session: When being in any other state, the world moves
probabilistically, while possibly updating the record, but its behavior is independent
of the actual world strategy. That is, for every W1,W2 ∈ W and every non-end-session
state (r, σ′), the random variables W1(r, σ′) and W2(r, σ′) are identically distributed.
Furthermore, the contents of that state changes obliviously of the record; that is, for

48Indeed, such an effect can also be captured by the original formulation (i.e., of Definition 3.10) by an awk-
ward modification of the world’s strategy. However, capturing such exploration sessions via Definition 5.5
seems more transparent.
49Indeed, the index of the current session (used in Definition 3.10) is a special case of the record (of prior
sessions).
50Note that Condition 3 in Definition 3.10 can be stated in this manner, when r equals the current index i,
andH is the set of all functions h over Ω such that h(i) = (i+1, h′(i)) for some h′ : N→ Ω. Alternatively, we
can state the condition in Definition 3.10 by postulating that h only depends on the number of prior sessions
recorded in r.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:52 Goldreich et al.

every W ∈ W and pair of non-end-session states ((r1, σ
′), (r2, σ

′)), the second element
of W (r1, σ

′) is distributed identically to the second element of W (r2, σ
′) (i.e., for every

σ′′ ∈ Ω it holds that
∑
r′ Pr[W (r1, σ

′) = (r′, σ′′)] equals
∑
r′ Pr[W (r2, σ

′) = (r′, σ′′)]).

Indeed, Definition 3.10 is a special case of Definition 5.5, obtained by requiring that for
every W ∈ W and every state (r, σ′) the first element of W (r, σ′) equals r+1 if the state
is an end-session state and equals r otherwise. Needless to say, here we are interested
in other cases.

One natural type of history-dependence that is captured by Definition 5.5 is the
dependence of (the initial contents) of the next session on the record of failures and
successes of prior sessions. Another natural case, which refers to the aforementioned
(multi-session goals with) exploration sessions, is defined next. In this case, the record
maintains the number of sessions completed so far and possibly also an exploration
request, denoted e, sent by the user (say, at the very end of the last session).

Definition 5.6. (exploration sessions, sketch): A multi-session goal with exploration
sessions is an H-dependent multi-session goal as in Definition 5.5 where for every
h ∈ H it holds that h(r) = (i + 1, e) if r = (i, e), and otherwise the world replaces the
record r = i by i + 1 (where r = i and i + 1 are viewed as integers). Lastly, during the
execution of a session, the record r = i remains intact unless (at the session’s end) the
world receives a special exploration request with contents e (from the user), which sets
the record to the value (i, e).

Indeed, r = (i, e) encodes the event that session i ended with the user requesting
exploration with contents e, and otherwise the record is viewed as merely encoding the
number of sessions completed so far. In the latter case, the new session is initialized
with a contents that only depends on the world’s non-deterministic choice (and on the
number of sessions completed so far).

The advantage of exploration sessions will be demonstrated in §5.3.2, but in the next
few pages we shift gears (again) and consider a seemingly orthogonal notion (of reset-
table servers). Actually, this notion plays a major role in the aforementioned demon-
stration, which explains the organization of our exposition.

5.3. Resettable Servers
A natural feature that many servers have is resettability: that is, a guarantee that
these servers can be simply reset to a predetermined initial state. This resetting is
performed in response to a simple predetermined user command (or message). Indeed,
we distinguish the case in which the “resetting command” (or “resetting message”)
is known a priori from the case in which this command (or message) may not not
be known a priori. Needless to say, it is more advantageous to have servers of the
first type, but we mention (see discussion below) that it is also beneficial to just have
servers of the second type. Formally, we capture the difference by considering classes
of resettable servers that respond to the same resetting command.

Definition 5.7. (user-resettable servers): A server strategy is called user-resettable
(or just resettable) if upon receiving a special (resetting) message from the user, it moves
to a predetermined state, which coincides with its initial local state. A class of reset-
table servers is called uniformly resettable if all servers in the class respond to the same
resetting message.

Note that we do not assume that the servers in a uniformly resettable class have the
same initial local state, nor do we assume any other common features (beyond resetting
upon receiving the same message).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:53

Uniformly vs non-uniformly resettable servers. In the rest of this section, we will
refer to classes of uniformly resettable servers. As we shall see uniform resettabil-
ity can play a role in constructing universal user strategies, while it seems that non-
uniformly resettable servers cannot play this role. Still, non-uniform resettability can
be beneficial for achieving various goals, and this benefit may be inherited by univer-
sal strategies. Specifically, if a server tends to get stuck (or damaged by some effect of
the environment), then being able to reset it (even by a server-specific message) is very
beneficial.

5.3.1. One benefit of uniform resettability. The benefit of using uniformly resettable
servers is demonstrated by considering the gap between Examples 4.12 and 4.21. Re-
call that both examples refer to solving computational problems posed by the world,
specifically, instances of a decision problem D0. In Example 4.12, we showed that
solvers for arbitrary computationally equivalent problems (i.e., equivalent to D0) can
be used for solving D0, by relying on a program checker for D0. In Example 4.21 we
showed that we can do better if both D0 and its complement have interactive proof
systems (with relatively efficient provers); in such a case, we can solve D0 by using
any server that is helpful for solving D0. That is, we can benefit from a considerably
wider class of servers.

Recall that the interactive proof systems required in Example 4.21 yield program
checkers (for the same decision problem), but the opposite direction is widely believed
to be false (because it would have implied EXP ⊆ PSPACE). This means that, in this
context, benefiting from arbitrary helpful servers is harder than benefiting from all
D-solvers, where D is the class of problems that are computationally equivalent to D0.

Here we note that the result of Example 4.12 can be extended to any class of helpful
servers that is uniformly resettable. That is, we show if D0 has a program checker, then
D0 can be solved by using any resettable server that is helpful for solving D0. Indeed,
this extends the result in Example 4.12, because the class of all D-solvers is a very
restricted class of helpful servers that are uniformly resettable.

PROPOSITION 5.8. Suppose that the decision problem D0 has a program checker.
Let U denote the class of user strategies that run in probabilistic polynomial-time, and
S0 denote an enumerable class of uniformly resettable servers that are all U-helpful
(with a bounded number of errors)51 for deciding D0. Furthermore, suppose that the
mapping S 7→ B is computable, where B is the error bounding function guaranteed for
S. Then, there exists an S0-universal user strategy such that, for every S ∈ S0, when
interacting with S, this universal strategy runs in probabilistic polynomial-time.

Indeed, the additionally required mapping exists trivially in the case that S0 is a class
of uniformly resettable servers that all have the same helpfulness-error bound.

PROOF. The proof is a hybrid of the arguments used in Examples 4.12 and 4.21. As
in both cases, we reduce the construction of a S0-universal strategy to the construc-
tion of an adequate user strategy for each server S ∈ S0. Furthermore, as in both
cases, each such user strategy U is coupled with an adequate sensing function U ′ that
is viable with respect to S and safe with respect to S0. In our construction we use a
program checker for D0 (just as done in Example 4.12), but only provide a relaxed via-
bility guarantee (as in Example 4.21), because we use a wider class of helpful servers
that (unlike in Example 4.12) includes servers that cause a bounded number of er-
rors. Consequently, as in Example 4.21, we shall be using Theorem 4.20 (rather than
Theorem 4.6, which was used in Example 4.12).

51Here we refer to the notion of refined helpfulness, as defined at the end of §4.4.1.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:54 Goldreich et al.

We mention that the enumeration of user strategies (required by Theorem 4.20)
holds by definition of U , whereas the mapping of users to the index of the corresponding
server (which allows us to obtain the corresponding error bound) can be obtained by
replacing each possible user strategy U with the sequence (U, 1), (U, 2), Thus, we
focus on constructing an adequate user strategy U and an adequate sensing function
U ′ for every S ∈ S0, while assuming that we know the corresponding error bound (as
well as the uniformly resetting message). This is done by following the approach of
Example 4.12, which relies on using a program checker for D0. In fact, following this
approach, it suffices to show how to transform a resettable server into a memoryless
strategy (i.e., a member of F)52 such that S is transformed into a D0-solver.

The transformation, which amount to emulating a memoryless strategy by using a
resettable strategy, proceed as follows. Let us assume first that this resettable strat-
egy S is helpful without any errors, and consider the corresponding user strategy u(S)
that uses it. Recall that we are trying to emulate a memoryless strategy that is sup-
posed to be a D0-solver, while the messages that we attempt to answer come from
the program checker (which the strategy U invokes, on input a message received from
the world). Upon receiving a new message (which is an instance of D0), we reset the
server, and start a new communication session using the said message as if it were
received from the world. (Note that we know the corresponding resetting message.)
When we (or rather the corresponding user u(S)) detect that the communication ses-
sion is completed (i.e., that u(S) has determined its answer to the world), we use the
corresponding answer (i.e., the answer that u(S) would have sent to the world) as our
response to the original message. We stress that all this activity is oblivious towards
the world; that is, we create sessions that do not exist with respect to the world, while
the server is unaware of their “unreal” nature (since by this goal’s definition the world
only communicates with the user, whereas the world neither sends messages to the
server nor expects any messages from it).

Indeed, the foregoing transformation converts any resettable server strategy into a
memoryless strategy, because in each emulation of the latter we invoke the former on
the same initial local state (via resetting) and communicate with it using the same
strategy u(S). Furthermore, if S ∈ S0 makes no errors when communicating with u(S),
then S is transformed into a D0-solver.

It is still left to deal with the case that S ∈ S0 makes a bounded number of errors
when communicating with u(S). The problem is that we only used the first session
in the interaction of S with u(S), whereas this session may always produce a useless
(e.g., random) answer. The solution is to let u(S) engage in many sessions with S, all
regarding the same instance, and rule by majority, where the number of such sessions
is significantly larger than the (expected) error bound, denoted b. Specifically, in our
ith emulation we reset the server O(log i) times, and after each resetting we run 3b
(“unreal”) sessions, all regarding the same instance that equals the ith orignal message
of the world (which we aim to answer). As our answer, we take the majority vote among
these O(log i) trials, where each trial takes a majority vote among its 3b (“unreal”)
sessions. Thus, the probability that we err in our ith emulation is at most 1/(i + 1)2,
because each of the O(log i) trials errs with probability at most 1/3. It follows that the
expected total number of errors that the emulated D0-solver commits is bounded by a
constant (i.e., indeed, the constant 1 will do).

This completes the presentation of the transformation of every S ∈ S0 into a mem-
oryless strategy, which is used by a corresponding user strategy, denoted U . Like in
Example 4.12, we couple U with a corresponding sensing function U ′, which uses the

52As in Example 4.12, F denotes the class of all memoryless strategies (i.e., strategies that maintain no
local state).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:55

checker’s output in the corresponding invocation (which corresponds to a real session
that is initiated with a D0-instance, selected by the world). This U ′ is O(1)-viable with
respect to (U, S), and is safe with respect to U and the class of all resettable servers
(which contains S0). This would suffice for a version of Theorem 4.20 that requires re-
laxed strong viability and weak safety (i.e., viability as in Theorem 4.20 and safety as
in Theorem 4.6). The current proposition follows.53

Digest. Proposition 5.8 demonstrates the benefit of (uniform) resetting. The effect
of resetting occurs at two levels. Most conspicuously, resetting is used to emulate a
memoryless server strategy, and the benefit is that a memoryless strategy may cause
less harm than an arbitrary strategy. In particular, the damage caused by improper
communication with a memoryless strategy is confined to the period of improper com-
munication, and does not propagate to the future.

5.3.2. On the benefit of exploration. In this section we demonstrate the benefit of explo-
ration (or rather exploration sessions as defined in §5.2.2) in the context of resettable
servers. Indeed, one may also view the following result as another demonstration of
the benefit of resettability, so it seems fair to credit both features with the following
demonstration.

Recall that all prior (quantitative) universality results upper bound the number of
errors as a function of the state size (indeed, see Theorems 4.17, 4.20, and 5.3). The
corresponding universal strategies switch away from a failing user strategy (which
they emulate) as soon as they sense many errors, where these errors occur with respect
to the actual goal that the user attempts to achieve. Instead, it would have been nice to
cause less errors with respect to the actual goal, even at the expense of causing errors
in some “side experiments” (indeed, explorations), while not slowing down progress
on the actual goal by too much. We shall actually do even better with the strategy
presented below.

The observation that underlies the following universal strategy is that the failure of
a specific user strategy (with respect to a fixed server) can be accounted to some fixed
state size (i.e., the minimal state size that causes failure). So if we can experiment
with various state sizes, in parallel to doing our “real” activity, then we may be able to
abandon a bad user strategy while causing a number of errors that is related to this
fixed size (rather than being related to the potentially larger size with which we are ac-
tually concerned). These parallel attempts are performed in exploration sessions, and
the formalism of Definition 5.6 guarantees that, from the world’s point of view, these
explorations do not effect the “real” sessions and vice versa. Furthermore, resetting
will be used so that all sessions (real or exploratory) look the same to the server, and
so the server behaves in these explorations exactly as it would have behaved in real
sessions.

THEOREM 5.9. (universality via exploration): Let G = (W, R), U , S, ε and B be
as in Theorem 4.20, except that here we refer to the varying-size generalization as in
Theorem 5.3. Suppose that G is a multi-session goal with exploration sessions, that S is
a set of uniformly resettable servers, and that each strategy in U resets the server at the
beginning of each new session. Further suppose that the number of rounds in a session

53Note that U ′ is not quite strongly safe (with respect to the latter class), because the number of rounds
used in each real session grows with its index (since we use increasingly more “unreal” sessions in our
emulations), and for that reason we cannot apply Theorem 4.20 as is. The benefit in using Theorem 4.20
is that it provides an error bound for the universal strategy, a bound not stated in the current result. We
mention that we could have obtained stronger results in a variety of natural cases. For example, if the size
of the session’s initial state (i.e., the length of the instance) grows such that the ith real session refers to size
Ω(log i) and if every bound B is polynomial, then we can obtain a polynomial safety bound.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:56 Goldreich et al.

of G is monotonically non-decreasing with the relevant size, and that the number of
start-session states of any specific size is finite. Then, there exists an S-universal user
strategy U such that for every S ∈ S there exists a constant b such that (U, S) robustly
achieves the goal G with b errors, where here we refer to error counts in the simple sense
as in Definition 4.15 (and, e.g., in Theorem 4.17). Furthermore, the number of rounds
spent in exploration sessions never exceeds a constant fraction of the total number of
rounds.

The constant b depends on the smallest size, denoted s, for which each of the prior user
strategies tried for interacting with the server S fails. Specifically, b is proportional to
the number of initial states (i.e., initial contents of start-session states) that have size
at most s. We note that while in many settings the said number is exponential in s,
there are settings in which the number is polynomial in s (e.g., the world may ask us to
solve decision problems that relate to a sparse set). We also note that the helpfulness
of the servers in S holds with respect to a class of users that reset the server at the
beginning of each session. While this class of user strategies is somewhat restricted, it
seems natural to expect “helpful” severs to be helpful also with respect to that class.

PROOF SKETCH. We focus on the special case in which the user strategies (in U) carry
no state across sessions and the world never chooses the same initial state for two
sessions. This case is quite natural, and allows us to present all the essential ideas.

Recall that the universal strategies used in all our proofs proceed by enumerating
all strategies in U and emulating each Ui until encountering a sufficient number of
failure indications. We do essentially the same, except that we try to maintain a bal-
ance between the number of rounds used in real sessions and the number of rounds
used in exploration sessions. In a sense, our strategy can be described in terms of an
imaginary world strategy that introduces such exploration sessions. Furthermore, the
exploration sessions are invoked such that all possible initial states (i.e., initial con-
tents of start-session states) of a certain size are used before we use states of larger
size. We stress that this activity is done in parallel to the execution of real sessions that
are initiated by the real world. Specifically, upon terminating the execution of a real
session (initiated by the real world), the imaginary world (or rather our user) initiates
new exploration sessions until the number of rounds used by all exploration sessions
exceeds half the total number of rounds so far.

Noting that the foregoing execution necessarily refers to varying state sizes,
we adopt the switching criterion used in the proof of Theorem 5.3. That is, we
switch from emulating Ui to emulating Ui+1 as soon as reach a round ti+1 such∑
t∈(ti,ti+1]:U ′i(σt)=0

1
Bi(s(σt))

exceeds 1. We stress that this accounting (and correspond-
ing switch) is done across all sessions, real sessions and exploration sessions alike.

A key observation regarding this interleaved execution of real sessions and explo-
ration sessions is that each of these (partial) executions is oblivious of the other. This
follows by the fact that (by hypothesis) each strategy Ui ∈ U starts each session by
resetting the server. Thus, we can decouple the aforementioned interleaved execution
into a real execution (containing no explorations) and an auxiliary executions that
consists of all exploration sessions. Furthermore, the auxiliary execution is totally de-
termined as a sequence of all possible explorations, ordered according to their initial
states (where states of smaller size appear before states of larger size).

Another key observation is that if (Ui, S) does not achieve the goal G (or rather its
real part), then there exists a constant si such that the contribution of exploration
sessions having (initial state of) size at most si to the sum

∑
t∈N:U ′

i
(σt)=0

1
Bi(s(σt))

ex-
ceeds 1. This follows from the fact that events that would occur in a real execution
(of real sessions) will also occur in the auxiliary execution (of exploration sessions)

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:57

whereas each of these executions consists of a sequence of mutually oblivious sessions,
together with our assumption that the world only uses each initial state at most once,
so the corresponding (finite) set of initial states witnesses the failure of Ui with S.

We may now invoke Theorem 5.3, while considering only the exploration sessions.
While these partial executions do not necessarily satisfy the additional technical re-
quirements regarding B, the reasoning underlying the proof of Theorem 5.3 applies,
and so we may infer that the accumulated contribution of the rounds containing er-
rors (in which exploration occurs) is upper-bounded by a constant that depends on
s = maxj∈[i−1]{sj}, where (Ui, S) achieves the goal (and the sj ’s are as above). Specif-
ically, the number of errors in these exploration sessions is bounded by i times the
number of different initial states of size at most s, because errors occur only at the end
of sessions. We need to show that the number of errors that occur in real sessions can
also be bounded in terms of s.

The last claim is shown by noting that the number of real sessions of size at least s
that took place in the said period does not exceed the number of exploration sessions.
This follows by the monotonicity hypothesis (which implies that the number of rounds
taken by each session of size at least s is no less than the number of rounds taken by
any session of size at most s). Thus, the total number of errors (both in exploration and
real sessions) is bounded by twice the aforementioned upper bound (on the number of
errors in exploration sessions). The theorem follows for this special case (i.e., where U
consists of strategies that, unlike the universal strategy that we presented, carry no
state across session).

When dealing with the general case, the failures at the various sessions are not fully
determined by the initial state of this session (and the strategies employed) but can be
affected by the history of the execution at the user’s end. (Indeed, the world’s behav-
ior is independent of the history and the same holds with respect to the server that
is being reset by the user at the beginning of each session, but the user strategy may
depend on previous sessions.) The solution to this problem is to enumerate finite se-
quences of sessions with start-session state having size that does not exceed a specific
bound. We treat each such finite sequence as we treated a single session before; that
is, our exploration sessions now consist of sequences of sessions taken from this enu-
meration. We stress that the emulated user strategy is reset at the beginning of each
such sequence of exploration sessions, but the real execution maintains state across
the real sessions. The enumeration guarantees that any finite sequence of sessions
that causes too many failures with respect to strategy U will be encountered in finite
time and cause the universal strategy to abandon U after a finite number of sessions.
The theorem follows.

5.4. Partial robustness
As hinted in Section 3.3, the notion of robustly achieving a goal (see Definition 3.14)
is too strong for the study of one-shot goals. Recall that this definition mandates that
the goal is achieved no matter which global state the system is initiated in. In general,
a more refined definition that quantifies over a subset of all possible global states is
desirable, because it corresponds to natural settings and offers greater definitional
flexibility. Most importantly, this refined definition allows us to consider the (natural
case of the) set of all global states in which the user’s local state is reset to some initial
value. (Indeed, in contrast to resetting the world, resetting the user seems feasible in
many cases, and seems less demanding than resetting the server.)

We relax (and generalize) the notion of robustly achieving a goal by quantifying over
a predetermined set of states (rather than over all states). We also allow an explicit
specification of the success probability (rather than insisting that the success proba-
bility equals 1).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:58 Goldreich et al.

Definition 5.10. (robustly achieving goals, revised): Let Θ ⊆ Ω and p : N → [0, 1].
We say that a pair, (U, S), of user-server strategies (Θ, p)-robustly achieves the goal
G = (W, R) if for every W ∈ W and every σ1 ∈ Θ a random execution of the system
(W,U, S) starting in state σ1 is successful with probability at least p(s(σ1)).

Definition 3.14 is obtained as a special case of Definition 5.10 by letting Θ = Ω and
p ≡ 1.

6. ONE-SHOT GOALS
Our focus so far has been on goals that refer to infinite executions. Note, however, that
the natural case of multi-session goals implicitly refers to “sub-goals” that should be
achieved within a finite number of rounds (i.e., the corresponding session). In this sec-
tion, we focus on such sub-goals, which when viewed in isolation are called “one-shot”
goals. We highlight the fact that, in this context (i.e., w.r.t “one-shot” goals), sensing
is necessary for achieving goals (or, in fact, sensing is actually implicitly included in
achieving goals).

6.1. Definitional treatment
The most natural definition of one-shot goals refers to finite (i.e., terminating) execu-
tions, and thus does not fit our main terminology (as presented in Section 3.1). Nev-
ertheless, one-shot goals can be viewed as a special case of general goals (see §6.1.1),
where this case is closely related to (but different from) a special case of multi-session
goals. In addition, in §6.1.2 we provide a direct (stand-alone) treatment of one-shot
goals.

6.1.1. One-shot goals as a special case of general goals

Definition 6.1. (one-shot goals): A goal G = (W, R) is called a one-shot goal if the
following conditions hold.

(1) The world’s states: The local states of the world are partitioned into two non-
empty sets consisting of non-terminating states and terminating states. The initial local
state belongs to the set of non-terminating states.

(2) The referee suspends its verdict until reaching a terminating state: The referee R
is compact. Furthermore, the corresponding function R′ evaluates to ⊥ if and only if
the current state is a non-terminating state.

(3) Termination: When being in a terminating state, the world just maintains its
state; that is, for each actual world strategy W ∈ W, and each terminating state σ it
holds that W (σ) = σ.

When being in any non-terminating state, the world follows its strategy as usual.

Thus, a typical execution of a system that refers to a one-shot goal consists of an actual
finite execution that enters a terminating state, which is artificially propagated by an
infinite sequence of repetitions of this state. It follows that an execution is successful if
and only if it enters a terminating state that evaluates to 1 (under R′).

Robustly achieving one-shot goals. As hinted in Section 3.3, the notion of robustly
achieving a goal (see Definition 3.14) is too strong for the study of one-shot goals, be-
cause no execution that starts in a terminating state that evaluates to 0 (under R′) can
be successful.54 Thus, we must relax the notion of robustly achieving a goal such that

54The same holds for any global state σ that causes the world to immediately enter such a terminating
state due to the messages currently in transit. We consider this case specifically since the world usually
terminates the session in response to a message that the user sends.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:59

starting in such states is not considered. Hence, our starting point is Definition 5.10,
which offers a general refined notion of robustly achieving a goal that is quantified
over a predetermined set of states rather than over all states. Indeed, the flexibility
provided by Definition 5.10 provides a good basis for defining robustly achievable one-
shot goals. Specifically, we let Θ consist of all global states in which the current user’s
local state is empty and the world’s next local state is non-terminating. (That is, we
wish to avoid not only states σ such that σ(w) is terminating, but also states σ that lead
the world to a terminating state in the next move, due to messages in transit.)

Definition 6.2. (robustly achieving one-shot goals): For a one-shot goal G = (W, R),
we say that a global state σ is doomed if there exists W ∈ W such that W (σ)(w) is
terminating,55 and we assume that G has states that are not doomed. Letting µ denote
an unspecified negligible function,56 we say that a pair of user-server strategies, (U, S),
robustly achieves the one-shot goal G = (W, R) if it (Θ, 1−µ)-robustly achieves the goal
G = (W, R) for Θ that contains all global states in which the user’s local state is empty
and the world’s local state is not doomed. If µ ≡ 0, then we say that (U, S) robustly
achieves the one-shot goal G = (W, R) in a perfect manner. We stress that if Θ = ∅,
then the goal G is not (robustly) achievable.

The foregoing adaptation of robust achievability to one-shot goals supports the follow-
ing adaptation of Proposition 3.15.

PROPOSITION 6.3. Let U, S and St be as in Proposition 3.15, and let Ut be a user
strategy that plays the first t rounds using the user strategy U0, then resets its local
state to empty and plays all subsequent rounds using the user strategy U . Then, if (U, S)
robustly achieves the one-shot goal G = (W, R), then so does (Ut, St).

The proof proceeds as in the case of Proposition 3.15, while relying on the modified
robust achievability hypothesis (which matches the modified construction of Ut).

User-sensing in the context of one-shot goals. The notion of strongly viable user-
sensing (cf. Definitions 3.17 and 3.18) is adapted to the current context in a way anal-
ogous to the adaptation applied to the notion of robustly achieving (cf. Definition 6.2
versus Definition 3.14). That is, a user-sensing function for a one-shot goal is consid-
ered strongly viable if the condition in Definition 3.17 holds for every σ1 ∈ Θ (rather
than for every σ1 ∈ Ω) and with probability 1− µ (rather than with probability 2/3).

As for the safety condition, its formulation is greatly simplified by the special fea-
tures of one-shot goals (i.e., the fact that the world’s state does not change once it enters
a termination state). In particular, the difference between Definitions 3.18 and 3.17
disappears, and it suffices to refer to the value of R′ at termination states. As a con-
sequence of safety referring to the value of R′ on terminating states though, the delay
period for sensing must be eliminated, or else a “safe” sensing function could provide a
failure indication after the session has terminated; actually, quite contrary to allowing
any delays in sensing, recalling that the user often terminates a session by sending

55Recall that the world makes a nondeterministic (adversarial) choice of actual strategy, as reflected by
the universal quantification over the world’s choice of strategy in Definition 5.10. Therefore the existence
of even one world strategy for which the execution terminates for a given global state is sufficient to force
the execution to terminate immediately from that state and hence render the goal (trivially) unachievable
in the sense of Definition 5.10. To rule out such uninteresting situations, we eliminate all (and only) such
initial states from consideration. We remark that in the envisioned setting where the session is terminated
in response to a designated message sent by the user, the doomed states are precisely states in which that
designated message is in transit to the world, regardless of the world’s choice of actual strategy.
56Recall that a function µ is negligible if for any polynomial function p(n), it holds that µ(n) · p(n) → 0 as
n→∞.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:60 Goldreich et al.

the world a message, the sensing function must predict the value of R′ on the subse-
quent round (e.g., from a doomed state), if it is to be of any use. Finally, for consistency
with the foregoing adaptation, we also adapt the strong safety condition (cf. Defini-
tion 3.18) such that it holds with probability 1 − µ (rather than with probability 2/3).
The modified definitions are presented in their entirety in Definition 6.4 (for the direct
definitional treatment of one-shot goals presented in §6.1.2).

Deriving multi-session versions of one-shot goals. For every one-shot goal, we can
derive a natural multi-session version by letting the new world initiate a new session
each time the original (one-shot) world enters a terminating state. Note that, in the
derived multi-session goal, we may only expect to succeed in a 1 − µ fraction of the
sessions (where µ is the error probability allowed in Definition 6.2), whereas achieving
a multi-session goal requires succeed in all but finitely many sessions. In order to over-
come this difficulty, we extend the definition of one-shot goals by allowing the user to
control the success probability. Formally, we consider a uniform family of user strate-
gies, U = {Ui}i∈N, along with a uniform family of negligible functions, µ = {µi}i∈N (e.g.,
µi(n) = µ(n)/i2 for some negligible function µ), and require that (Ui, S) (Θ, µi)-robustly
achieves the goal (for every i ∈ N). An analogous adaptation will be applied to the
user-sensing function.

6.1.2. A direct definition of one-shot goals. A direct definitional treatment of one-shot (fi-
nite) goals is derived by degenerating the definitional treatment of infinite goals pro-
vided in Section 3. Thus, we consider finite executions of the system (consisting of a
user, a server, and the world), which raises the question of when such an execution
terminates.

Termination. Recall that termination was defined in §6.1.1 (see Def. 6.1), but that
notion of termination was a labeling of the states of the world that was used for the
purpose of defining the temporal decision R′, while the actual execution never stops
formally (but does get “frozen” from the world’s point of view). Here, instead, we con-
sider an actual termination, and so it is most natural to define termination according
to the user state. We may assume, without loss of generality, that the user notifies
the world whenever it is about to terminate (i.e., the last message sent by the user
indicates its termination), and so the world may terminate in the same round. (Note
that we cannot assume that the server terminates in the same round, since it may not
perfectly understand the user even if the goal has been achieved with its help.)

Thus, the notions of strategies and executions remain intact, except that now exe-
cutions are typically finite. That is, we consider goals in which, for each choice of the
actual world strategy, with high probability the corresponding system halts in a finite
number of rounds. This refers to all definitions in Section 3.1.

Since we are going to define achieving a goal and sensing it according to the value of
the referee at the time of termination, we do not need the notion of compactness and
the corresponding temporal decision function (see Section 3.2).57

Robustly achieving one-shot goals and sensing it this context. The relevant defini-
tions are very similar to those presented in §6.1.1, except that here we refer to finite
executions. This is straightforward with respect to the definition of robustly achieving
one-shot goals (i.e., Def. 6.2). The only thing to bear in mind is that success refers to
the world’s state at termination time. Turning to user-sensing in the context of one-
shot goals, there is more to say. The most important thing is that while the following

57Alternatively, one may say that all finite goals are compact and that the corresponding temporal decision
function R′ is derived from the referee R such that R′(σ) = R(σ) if σ is a terminating state and R′(σ) = ⊥
otherwise.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:61

definition has a “strong” flavor (as Definitions 3.17 and 3.18), it directly refers to the
referee (and does not refer to the non-existing temporal decision function). For sake of
self containment, we spell out this definition.

Definition 6.4. (user sensing in the one-shot context): Let G = (W, R) be a one-shot
goal, S be a server strategy, and Θ be as in Definition 6.2. The predicate U ′ : Ω→ {0, 1}
is (1 − µ)-safe with respect to (U, S) (and G) if, for every W ∈ W and every σ1 ∈ Θ,
letting σ denote a random execution of the system (W,U, S) starting at state σ1, with
probability at most µ(s(σ1)), it holds that both R(σt) = 0 and U ′(σt) = 1, where σt is
the state at termination time. The predicate U ′ is (1 − µ)-viable with respect to (U, S)
if, for every W ∈ W and every σ1 ∈ Θ, with probability at least 1 − µ(s(σ1)), it holds
that U ′(σt) = 1 holds.

We will usually take µ to be a negligible function, and talk of safety and viability
instead of (1 − µ)-safety and (1 − µ)-viability, respectively. Indeed, if U ′ is viable and
safe with respect to (U, S) (and G), then (U, S) robustly achieves the goal G.

Deriving multi-session versions of one-shot goals. This is done as in §6.1.1, except
that here the modification applies to an execution that actually terminated rather
than to one that is only considered as terminating.

6.2. A tighter relation between sensing and universality
Universality results analogous to those presented in the previous sections (e.g., Theo-
rem 5.3) can be proved for one-shot goals; in fact, the proofs are simpler in the current
context. Note that these universality results assume a stronger notion of sensing (as
introduced here) and thus may yield a stronger universal strategy, which is “aware” of
its success in achieving the goal. This awareness is reflected in the fact that, with high
probability, when the user strategy halts it must be the case that the (one-shot) goal
is achieved. Thus, in the one-shot goal, there is a tighter relation between sensing and
universality.

Firstly, we note that, any user strategy U that is universal with respect to a server
class S yields a sensing function that is safe and viable with respect to U and S. Specif-
ically, this sensing function is identical to the halting predicate that underlines U (i.e.,
the predicate that determines whether or not U halts after each round). Secondly, by
employing an argument analogous to (but simpler than) the one used in the proof of
Theorem 4.26, we may infer that this sensing function is safe with respect to all servers
(assuming that the original server class S includes all helpful servers).

7. THE SYMMETRIC MODEL
Recall that our main treatment of goals was confined to the asymmetric case in which
the user has a goal, while the server is only there to help it. That is, the goals treated
so far are actually the “user’s goals,” whereas the server had no goal of its own (beyond,
maybe, assisting the user). In this section we consider the general case in which both
parties may have their “individual goals”; for example, even if we think of users and
servers, the vanilla setting studied so far can be extended to account for the possibility
that the server wishes to obtain some compensation for its help (i.e., the server also
has some individual goal).

More generally, we consider a pair of parties having arbitrary individual goals. In-
deed, it may be impossible to simultaneously achieve both these individual goals, but
recall that also in the asymmetric (user–server) setting there are goals that cannot be
achieved. As in the latter setting, our focus is on goals that can be achieved (when both
parties use adequate strategies), and the question that we study is whether and under
what conditions these goals can be achieved via interaction between parties that are

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:62 Goldreich et al.

initially incompatible (i.e., do not understand each other a priori). In this section we
outline a treatment of this question.

Parties, goals, compactness, and achieving. The basic framework remains un-
changed, except that the parties (other than the world) are now treated symmetrically.
In general, we may have n def

= m− 1 ≥ 2 such parties. More importantly, the definition
of the referee R is extended such that it maps global states into n-ary Boolean vectors,
where the ith coordinate refers to the personal goal of the ith party. The same applies
to the temporal decision function R′ (underlying the definition of compactness). An n-
tuple achieves the ith personal goal if a random execution of the corresponding system
evaluates (under R) to a vector having 1 in the ith coordinate, and the global goal is
achieved if all n personal goals are achieved.

Recall that we avoid the question of which global goals are achievable, and focus on
(personal and global) goals that are achievable, investigating the possibility of achiev-
ing them in the presence of initial misunderstandings. Note that we did exactly the
same in the asymmetric setting, but there this attitude felt less alarming because there
was no room for conflict between the personal goals of the parties.58 Thus, our focus is
again on the communication between the n parties, and the possibility of meaningful
communication.

Sensing. Again, the basic approach remains unchanged, and is merely extended to
n parties. Needless to say, when dealing with the ith party, the result of its sensing
function is compared against the ith coordinate of the temporal decision function R′.
Note that safety and viability are defined with respect to a tuple of n−1 strategies (for
the other n− 1 parties), and with respect to a class of such tuples.

Helpfulness. This notion generalizes naturally too, provided that we confine our-
selves to helpfulness with respect to achieving the personal goals of individual parties.
To clarify the issue, let us focus on the case of two parties (i.e., n = 2), and let P1 and
P2 be classes of strategies for these two parties. For i = 1, 2, we say that P ∈ P3−i
is (i,Pi)-helpful if there exists Q ∈ Pi such that (P,Q) achieves the personal goal of
Party i. However, it is not necessarily the case that Q is (3 − i,P3−i)-helpful. Further-
more, even if P3−i ∈ P3−i is (i,Pi)-helpful and Pi ∈ Pi is (3 − i,P3−i)-helpful, it is not
necessarily the case that (P1, P2) achieves the personal goal of any of the parties (let
alone achieving the global goal). Nevertheless, all these reservations become irrelevant
with respect to our results regarding universal strategies.

Universal strategies. Remaining in the confine of two parties (i.e., n = 2), we say
that a strategy for party i is universal with respect to its personal goal if it can achieve
this goal when communicating with any party that is helpful (for that personal goal).
In other words, if some strategy for Party i achieves the goal when communicating
with the other party, then the universal strategy also achieves the goal when commu-
nicating with this party. That is, for i = 1, 2, we say that U is (i,P3−i)-universal if it
achieves the personal goal of Party i when communicating with any strategy P ∈ P3−i,
where we definitely confine ourselves to classes P3−i of (i,Pi)-helpful strategies (for
Party 3− i).59

58Recall that in the asymmetric setting the server has no personal goal (and the user’s personal goal is
identified with the global goal, which was just called ‘the goal’). Still, the question of whether the user’s goal
is achievable arises in that setting too, and we have just focused on achievable goals. We do exactly the same
here.
59Note that the index i in the definitions of (i, ·)-helpfulness and (i, ·)-universality refers to the index of the
party whose personal goal is being achieved.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:63

THEOREM 7.1. (symmetric result, loosely stated): Let G be a goal, i ∈ {1, 2}, and
let P1 and P2 be classes of strategies for the two parties such that every strategy in
P3−i is (i,Pi)-helpful (in an enhanced sense).60 Then, there exists an (i,P3−i)-universal
strategy.

Indeed, Theorem 7.1 is merely a restating of Theorem 2.1: Theorem 7.1 refers to
achieving the personal goal of Party i. It is just that for a fixed goal G, the party that
Theorem 7.1 refers to is not predetermined (as in Theorem 2.1). This opens the door to
applying Theorem 7.1 to both parties (see next).

Note that if the hypothesis of Theorem 7.1 holds for both i ∈ {1, 2}, then we obtain
a pair of strategies (U1, U2) such that each Ui is (i,P3−i)-universal. It follows that if
(U1, U2) ∈ P1 × P2, then (U1, U2) achieves the global goal. Thus, in such a case, if each
party looks after its own interest (of achieving its personal goal), which calls for using
a universal strategy, then the global goal is achieved as well unless one party chooses
a universal strategy that is not helpful to the other party.

We stress that the aforementioned achievability of the global goal relies on the hy-
pothesis that the universal strategies reside in the class of strategies that are help-
ful for the other party (i.e., for every i ∈ {1, 2}, the (i,P3−i)-universal strategy Ui is
(3 − i,P3−i)-helpful). In other words, there is no free lunch here; the key to achieving
the global goal is the parties’ use of strategies that are helpful for the (goal of the) other
party. The point is that this choice of a helpful strategy suffices; that is, the party need
not know (a priori) the strategy employed by the other party.

Indeed, a natural question arises: For which classes of strategies P1 and P2 as in
Theorem 7.1 is it possible to have universal strategies that are helpful to the other party
(i.e., for every i, there exists an (i,P3−i)-universal strategy that is (i,Pi)-helpful)?

Extension to any n ≥ 2. Towards such an extension we need to generalize the no-
tions of helpfulness and universality, where in both cases we will consider (i − 1)-
tuples of strategies for the other parties. Specifically, for i ∈ [n], we say that
(P1, ..., Pi−1, Pi+1, ..., Pn) ∈ P−i is (i,Pi)-helpful if there exists Q ∈ Pi such that
(P1, ..., Pi−1, Q, Pi+1, ..., Pn) achieves the personal goal of Party i. Similarly, we say that
U is (i,P−i)-universal if it achieves the personal goal of Party i when communicating
with any tuple (P1, ..., Pi−1, Pi+1, ..., Pn) ∈ P−i.

APPENDIX: On the measurability of various sets of executions
In general (i.e., for a general referee that is not compact), the set of successful exe-
cutions may not be measurable (with respect to the natural probability measure that
assigns each prefix of a random execution a measure that corresponds to the probabil-
ity that they occur). This follows from the fact that an arbitrary referee gives rise to an
arbitrary subset of the set of all executions, whereas the set of executions is isomorphic
to the set of real numbers. The compactness condition imposes a structure on the set
of successful executions, and thus guarantees that this set is measurable (with respect
to the natural probability measure).

Recall that a probability measure is defined with respect to a sigma-algebra that
contains the sets of interest, which in our case is the set of successful executions (as
well as other related sets). A sigma-algebra is a pair (X,Σ), where X is a set and
Σ ⊆ 2X , such that Σ 6= ∅ is closed under complementation and countable unions (i.e.,
S ∈ Σ implies X \ S ∈ Σ and S1, S2, ... ∈ Σ implies ∪i∈NSi ∈ Σ). The natural probability
measure arises from a sigma-algebra that corresponds to all execution prefixes.

60The enhancement referred to here is analogous to the one arising from the various universality theorems
in the asymmetric case.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:64 Goldreich et al.

Definition A.1. (the natural probability measure of executions): For a system
(W,U, S), we consider the sigma-algebra (X,Σ) such that X is the set of all possi-
ble executions of the system (W,U, S) and Σ equals the closure of the family of sets
{E(i,σ) : i ∈ N, σ ∈ Ω} under complementation and countable union, where E(i,σ) de-
notes the set of executions σ = (σ1, σ2...) such that σi = σ. The natural probability
measure of executions, denoted µ, is obtained by assigning each prefix of a random
execution a measure that corresponds to the probability that it occurs.

Note that the mapping µ is indeed a measure for the foregoing sigma-algebra Σ, be-
cause it is (1) non-negative and (2) satisfies sigma-additivity (i.e., for any countable
collection of pairwise disjoint sets S1, S2, ... ∈ Σ it holds that µ(∪i∈NSi) =

∑
i∈N µ(Si)).

Furthermore, it is a probability measure because it (3) assigns 1 to the set of all execu-
tions X. As we shall see, for compact referees, the set of successful executions can be
expressed as a countable union of sets in Σ.

PROPOSITION A.2. For any compact referee R, the set of successful executions is
measurable with respect to the natural probability measure of executions.

PROOF. Let R′ be the temporal decision function associated with R (by the compact-
ness hypothesis), and assume for simplicity that R′ never assumes the value ⊥. In this
case, the set of successful executions is a countable union of the sets St, where St is the
set of executions in which no failures occur after time t (i.e., σ ∈ St if for every i > t it
holds that R′(σi) = 1). On the other hand, St equals ∩i>tS′i, where S′i = {σ : R′(σi) = 1}
is a countable union of E(i,σ) such that R′(σ) = 1.

To handle the case that R′ may assume the value ⊥, we show that the set of execu-
tions containing no infinite runs of ⊥ is measurable. The latter set is the complement
of a countable union of the sets Ft, where Ft is the set of executions such that R′ always
evaluates to ⊥ after time t (i.e., σ ∈ Ft if for every i > t it holds that R′(σi) = ⊥). On
the other hand, Ft equals ∩i>tF ′i , where F ′i = {σ : R′(σi) = ⊥} is a countable union of
E(i,σ) such that R′(σ) = ⊥.

We also remark that given a system (W,U, S) in which the user has a user-sensing
function U ′, the set of executions in which the user-sensing function gives finitely many
negative indications is also measurable by essentially the same argument.

ACKNOWLEDGMENTS

We wish to thank some anonymous reviewers that have commented on past versions of this paper, while
providing useful comments. We are particularly grateful to a JACM reviewer who provided very insightful
comments. In fact, we have incorporated extracts from that review in the initial paragraphs of the introduc-
tion, and in Footnote 10.

REFERENCES
BABAI, L., FORTNOW, L., AND LUND, C. 1991. Non-Deterministic Exponential Time has Two-Prover Inter-

active Protocols. Computational Complexity, 1, 1, 3–40.
BABAI, L., FORTNOW, L., NISAN, N., AND WIGDERSON, A.. 1993. BPP has Subexponential Time Simula-

tions unless EXPTIME has Publishable Proofs. Complexity Theory, 3, 307–318.
BELLARE, M., AND GOLDWASSER, S. 1994. The Complexity of Decision Versus Search. SIAM J. Comput.,

23, 1, 91–119.
BERNERS-LEE, T., HENDLER, J., AND LASSILA, O.. 2001. The Semantic Web. Scientific American, pages

34–43.
BLUM, M., AND KANNAN, S.. 1989. Designing Programs that Check their Work. In Proc. 21st Annual ACM

Symp. Theory of Comput. (STOC), pages 86–97.
BRIGGS, P., SRIVASTAVA, L., AND INTERNATIONAL TELECOMMUNICATION UNION. 2005. The Internet of

Things. 7th ITU Internet report. International Telecommunication Union, Geneva.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A Theory of Goal-Oriented Communication A:65

DEWEY, J. 1929. Experience and Nature. Norton, New York. First edition, 1925.
GOLDREICH, O., JUBA, B., AND SUDAN, M. 2009. A Theory of Goal-Oriented Communication. Technical

Report TR09-075, Electronic Colloquium on Computational Complexity (ECCC).
GOLDREICH, O., MICALI, S., AND WIGDERSON, A. 1991. Proofs that Yield Nothing but their Validity or All

Languages in NP Have Zero-Knowledge Proof Systems. J. ACM, 38, 3, 691–729. Preliminary version in
27th FOCS, 1986.

GOLDWASSER, S., MICALI, M., AND RACKOFF, C. 1989. The Knowledge Complexity of Interactive Proof
Systems. SIAM J. Comput., 18, 186–208. Preliminary version in 17th STOC, 1985.

HUTTER, M. 2004. Universal Artificial Intelligence. Springer, Berlin.
JUBA, B. 2011. Universal Semantic Communication. Springer, Berlin. Doctoral dissertation, MIT, 2010.
JUBA, B., KALAI, A., KHANNA, S., AND SUDAN, M. 2011. Compression Without a Common Prior: an

Information-theoretic Justification for Ambiguity in Language. In 2nd Symp. Innovations Comp. Sci.,
pages 79–86.

JUBA, B. AND SUDAN, M. 2008a. Universal Semantic Communication I. In Proc. 40th Annual ACM Symp.
Theory of Comput. (STOC), pages 123–132.

JUBA, B. AND SUDAN, M. 2008b. Universal Semantic Communication II: A Theory of Goal-Oriented Com-
munication. Technical Report TR08-095, Electronic Colloquium on Computational Complexity (ECCC).

JUBA, B. AND SUDAN, M. 2011. Efficient Semantic Communication via Compatible Beliefs. In 2nd Symp.
Innovations Comp. Sci., pages 22–31.

JUBA, B. AND VEMPALA, S. 2011. Semantic Communication for Simple Goals is Equivalent to On-line
Learning. In Proc. 22nd International Conf. Algorithmic Learning Theory, Lecture Notes in Artif. Intel.
Series, vol. 6925, 277–291, Springer.

LUND, C., FORTNOW, L., KARLOFF, H., AND NISAN, N. 1992. Algebraic Methods for Interactive Proof
Systems. J. ACM, 39, 4, 859–868. Preliminary version in 31st FOCS, 1990.

MALINOWSKI, B. 1923. The Problem of Meaning in Primitive Languages. In The Meaning of Meaning,
C. K. Ogden and I. A. Richards. Harcourt Brace Jovanovich, New York.

RUSSELL, S. AND SUBRAMANIAN, D. 1995. Provably Bounded-Optimal Agents. J. Artif. Intel. Res., 2, 575–
609. Preliminary version with R. Parr in 13th IJCAI, 1993.

SHAMIR, A. 1992. IP = PSPACE. J. ACM, 39, 4, 869–877. Preliminary version in 31st FOCS, 1990.
SHANNON, C. 1948. A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379–423,

623–656.
SHADBOLT, N., BERNERS-LEE, T., AND HALL, W. 2006. The Semantic Web Revisited. IEEE Intelligent

Systems, 21, 3, 96–101.
UCKELMANN, D., HARRISON, M., AND MICHAHELLES, F. 2011. An Architectural Approach Towards the

Future Internet of Things. In Architecting the Internet of Things, D. Uckelmann, M. Harrison, and
F. Michahelles, Eds. Springer, Berlin. 1–24.

UCKELMANN, D., HARRISON, M., AND MICHAHELLES, F. 2011. Architecting the Internet of Things.
Springer, Berlin.

WITTGENSTEIN, L. 1958. The Blue and Brown Books: Preliminary Studies for the ‘Philosophical Investiga-
tions’. Harper & Row, New York.

WITTGENSTEIN, L. 2001. Philosophical Investigations. Basil Blackwell, Malden. First edition, 1953.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

