Problem 1: (10 points) In class we “showed” that a van Emde Boas tree in which clusters are stored in hash tables uses $O(n)$ space. Recall that we argued as follows, where a u-vEB tree stores integers in the range $\{0, \ldots, u - 1\}$:

1. A u-vEB tree contains three types of pointers: (i) one to its min, (ii) one to a summary \sqrt{u}-vEB, and (iii) several pointers, in a hash table, to cluster \sqrt{u}-vEBs.
2. Each cluster pointer can be “charged to” the minimum in that cluster.
3. Each summary pointer of a u-vEB structure V can be “charged to” V’s own minimum.
4. Thus, each min pointer receives charges from at most 2 pointers of types (ii) and (iii).
5. Therefore the total space is big-Oh of the total number of min pointers.
6. Therefore the total space is big-Oh of the total number of items, which is n.

Now for the problems:

(a) (1 points) Which of the following statement(s) above (from (1)-(6)) are wrong? What is the potential error?

(b) (1 points) Show that a u-vEB tree on n items consumes space $O(n \lg u)$.

(c) (2 points) Show that a u-vEB tree on n items consumes space $O(n \lg \lg u)$ (note if you solve this, you don’t need to solve part (b) separately).

(d) (4 points) Give a family of examples of n items that, when stored in a u-vEB tree, consume space $\Omega(n \lg \lg u)$. In your family of examples, n and u should go to infinity.

(e) (2 points) How would you use indirection to modify vEB trees to solve the static predecessor problem with $O(n)$ space and $O(\lg \lg u)$ query time?
Problem 2: (5 points) Let \(w \) be a perfect square. Show that there exist positive integers \(m \) and \(t, m < 2^w \) and \(0 \leq t \leq w \), such that for all \(x \in \{0, 1\}^{\sqrt{w}} \) we have that

\[
\left(\left(\left(\sum_{i=1}^{\sqrt{w}} x_i \cdot 2^i \right) \cdot m \right) \gg t \right) \& (2^{\sqrt{w}} - 1) = \sum_{i=1}^{\sqrt{w}} x_i \cdot 2^{i-1}.
\]

That is we can pick \(m \) and \(t \) so that, if we form a bitvector of length \(w \) which has the \(\sqrt{w} \) bits of \(x \) evenly spread out with a \(\sqrt{w} \)-spacing of zeroes in between bits, then multiplying by \(m \) and bitshifting right by \(t \) followed by masking perfectly compresses the bits of \(x \) into the rightmost \(\sqrt{w} \) bits of a machine word. This provides the proof of a lemma we needed for \(O(1) \) time most significant set bit in Lecture 2.

Problem 3: (10 points) Give an algorithm for computing the least significant set bit of a given input word in constant time. You may assume that you have spent some time in pre-processing to pre-calculate any special constant values that your algorithm needs.