
CS 229r: Algorithms for Big Data Fall 2013

Lecture 13 — October 15, 2013

Prof. Jelani Nelson Scribe: Sam Elder

1 Introduction and Overview

We’re starting a new topic: Numerical linear algebra. We’ll see some of related topics, too. We’ll
spend about four lectures on this before moving to compressed sensing.

Today, we’ll look at approximate matrix multiplication. Next lecture we’ll get to (oblivious) sub-
space embeddings and least squares regression. For all of these, we’ll develop randomized approx-
imate algorithms that compute what they’re supposed to compute faster than deterministic exact
algorithms for the problems.

Let’s start by talking about matrix multiplication. We have matrices A, which is n × r, and B,
which is n × p, and we want to compute ATB. (This awkward formulation will make some later
lemmas seem natural.)

The standard algorithm takes time rnp, which just has three for loops. You can do faster. If A and
B are both square, i.e. r = n = p, then you can do it in time O(nω), where ω < 2.373 Strassen
[7] was the first one doing better, and he got O(nlog2 7) by some clever recursion. Coppersmith and
Winograd [2] in the 1980s got a better exponent, and there have been some recent improvements by
Williams [9] in 2011 and Stothers [6] in 2010. No one uses these, and people still only occasionally
use Strassen.

2 Approximate Matrix Multiplication

That’s square matrices and exact computation, so let’s look at approximate matrix multiplication.
What do we want?

We want to quickly find matrices Ã, which is m × r and B̃ which is m × p, where m � n, such

that
∥∥∥ÃT B̃ −ATB∥∥∥ is small. In this lecture, that norm will be the Frobenius norm, and small will

be ε ‖A‖F ‖B‖F . Recall that ‖X‖F = (
∑

i,j X
2
ij)

1/2 (treat the matrix as a vector and take its `2
norm).

2.1 Sampling Algorithm

We’ll look at two algorithms for matrix multiplication. The first one will use sampling and is due
to Drineas, Kannan, and Mahoney [3]. Here’s the approach: Notice that if A consists of rows
xT1 , . . . , x

T
n and B consists of rows yT1 , . . . , y

T
n (so each of these vectors are column vectors), then

1

ATB =
∑n

k=1 xky
T
k . Indeed,

(ATB)ij =
∑
k

AkiBkj =
n∑
k=1

(xk)i(yk)j = (
n∑
k=1

xky
T
k)ij .

The idea is that we have a these n outer products, and we’ll only sample m � n of them. We

won’t use the uniform distribution, though: We’ll choose ÃT B̃ =
1

m

m∑
t=1

xkty
T
kt

pkt
, where pk is the

probability that we sample out product xky
T
k .

In terms of matrices, Ã = ΠA and B̃ = ΠB, where Π has exactly one nonzero entry in each row,
chosen according to some distribution. If we pick a column k with probability pk, then we’ll put a
1/
√
mpk entry in that row. The probability distribution isn’t uniform; we’ll take pk ∝ ‖xk‖2 ‖yk‖2.

Notice that if you were to implement this as a streaming algorithm, you’d need two passes over the
data, the first one to determine the pk, and the second to pick them with that probability. Perhaps
it could be solved with some variant of reservoir streaming though.

The claim is that this is going to be an unbiased estimator and that its variance is small. We can’t
exactly improve this probability by doing a bunch of trials and taking the median since these are
matrices, but there is a way we can boost it anyways.

So we have ÃT B̃ = 1
m

∑m
t=1

xktykt
pkt

. Call the summand Zt. We’ll look at EZt, and that’ll tell us

about the expectation of this sum by linearity of expectation. We have

EZt =
1

m

n∑
k=1

P(kt = k)xky
T
k

pk
=

1

m
ATB,

so the expectation is correct. Now the variance calculation. We have

E
∥∥∥ÃT B̃ −ATB∥∥∥2

F
=

r∑
i=1

p∑
j=1

E((ÃT B̃)ij − (ATB)ij)
2

=
∑
i,j

Var

(
m∑
t=1

(Zt)ij

)
=
∑
i,j

mVar((Zt)ij)

since the Zt are independent. And we have

Var((Zt)ij) ≤ E(Zt)
2
ij =

1

m2

n∑
k=1

pk(xk)
2
i (yk)

2
j

p2
k

E
∥∥∥ÃT B̃ −ATB∥∥∥2

F
≤ 1

m

∑
i,j

n∑
k=1

(xk)
2
i (yk)

2
j

pk

=
1

m

n∑
k=1

1

pk
‖xk‖2 ‖yk‖2

=
1

m

(
n∑
k=1

‖xk‖ ‖yk‖

)2

(substituting the definition of pk)

≤ 1

m

(
n∑
k=1

‖xk‖2
)(

n∑
k=1

‖yk‖2
)

(Cauchy-Schwarz)

2

=
1

m
‖A‖2F ‖B‖

2
F .

Now when we apply Chebyshev, we get

P
Π

(∥∥∥ÃT B̃ −ATB∥∥∥
F
> ε ‖A‖F ‖B‖F

)
<

E
∥∥∥ÃT B̃ −ATB∥∥∥2

F

ε2 ‖A‖2F ‖B‖
2
F

<
1

ε2m
.

In conclusion, we only need to sample m = O(1/ε2) outer products to get success with probability
9/10.

So we said we could bootstrap the failure probability to δ efficiently. We could just make m =
O(1/ε2δ) but we can also do it more efficiently, a log(1/δ) multiplier.

We’ll see a trick due to Clarkson and Woodruff [1] from STOC ’09 (quite recent!). We’ll pick
Π1, . . . ,Πt where t = O(log 1/δ) and form t matrix products ÃT1 B̃1, . . . , Ã

T
t B̃t. In the past, we had

elements and we took the median, but these are matrices. We’d like to compute
∥∥∥ÃT B̃ −ATB∥∥∥

F

and see if that’s small, but that would involve computing ATB. So instead, we’ll compare them
with each other: Pick the first j you find such that∥∥∥ÃTj B̃j − ÃTi B̃i∥∥∥

F
<
ε

2
‖A‖F ‖B‖F

for more than half of the i’s. This is something like choosing a median.

Why does this work? Well, with probability 1−δ, more than half of the j’s have
∥∥∥ÃTj B̃j −ATB∥∥∥

F
<

ε
4 ‖A‖F ‖B‖F , by the Chernoff bound. Then we just use the triangle inequality to know that for
all such i, j,∥∥∥ÃTj B̃j − ÃTi B̃i∥∥∥

F
≤
∥∥∥ÃTj B̃j −ATB∥∥∥

F
+
∥∥∥ÃTi B̃i −ATB∥∥∥

F
≤ ε

2
‖A‖F ‖B‖F ,

so any such j will be counted. Could another one trick us? Nope: If more than half of the i’s have
ÃTi B̃i close to some ÃTj B̃j , then at least one of these will be close to ATB, and this implies by the

triangle inequality that any success will be within 3ε
4 ‖A‖F ‖B‖F of ATB, as desired.

2.2 Dimensionality Reduction-based Algorithm

Now let’s see another way to do approximate matrix multiplication which is related to something
we’ve seen previously in this class: the Johnson-Lindenstrauss (dimensionality reduction) lemma.
Using JL for approximate matrix multiplication was first explored by Sarlós [5], but we’ll present the
definitions and analysis from [4] since it obtains sharper results by a logarithmic factor (Clarkson
and Woodruff [1] also improved the logarithmic factor in the special case where the JL matrix of
interest is a scaled random sign matrix).

Definition 1. A distribution D over Rm×n is said to have the (ε, δ, p)-JL moment property if for
every x ∈ Rn with ‖x‖ = 1,

E
Π∼D

∣∣∣‖Πx‖2 − 1
∣∣∣p < εpδ.

3

Note that by Markov, this gives us

P
Π

(∣∣∣‖Πx‖2 − 1
∣∣∣ > ε

)
<

1

εp
E
Π

∣∣∣‖Πx‖2 − 1
∣∣∣p < δ.

Having a moment bound looks a little bit stronger than just having a tail bound, but often times
it isn’t. Sometimes you prove some tail bound looking like

∀ε > 0, P
Π∼D

(
∣∣∣‖Πx‖2 − 1

∣∣∣ > ε) < exp(−c(ε2m+ εm)).

However, this statement is actually equivalent to D having the (ε, exp(−c(ε2m+εm)),min{ε, ε2}m)-
JL moment property for all ε > 0. One direction is just Markov as above, but for the other direction,
you can use integration by parts. Let Z be a nonnegative random variable and ϕ its pdf. Then

EZp = −
∫ ∞

0
εp(−ϕ(ε)) dε = [εp(1− Φ(ε))]|∞0 + p

∫ ∞
0

εp−1(1− Φ(ε)) dε = p

∫ ∞
0

εp−1(1− Φ(ε)) dε.

Note 1 − Φ(ε) (where Φ is the cdf) is just P(Z > ε), thus inserting the tail bound above gives
a moment bound. Notice that for the moment bound, you need a tail bound like this for every
ε, because you need to integrate. We won’t focus on this too much, but just remember that tail
bounds for every ε are equivalent to moment bounds (of this form) for every ε.

Theorem 2. Suppose that D satisfies the (ε, δ, p)-JL moment property for some p ≥ 2. Then for
every A,B with matching numbers of rows,

P
Π∼D

(∥∥(ΠA)T (ΠB)−ATB
∥∥
F
> 3ε ‖A‖F ‖B‖F

)
< δ.

Proof. The idea is that the JLMP implies that you preserve vectors, and we’ll show that this implies
you preserve dot products, and then that implies that you preserve matrix products. Arguing in
terms of moments instead of tail bounds let’s us exploit Minkowski’s inequality (namely that ‖ · ‖p
satisfies triangle inequality). Arguing in terms of tail bounds tempts you to use the union bound to
say all entries of (ΠA)T (ΠB)−ATB are preserved simultaneously, but this leads to worse bounds.

So suppose that for a, b ∈ Rn, ‖a‖ = ‖b‖ = 1. Then ‖a− b‖2 = ‖a‖2 + ‖b‖2 − 2 〈a, b〉 and
‖Πa−Πb‖2 = ‖Πa‖+ ‖Πb‖2 − 2 〈Πa,Πb〉. Therefore, under distribution D,

‖〈Πa,Πb〉 − 〈a, b〉‖p =
1

2

∥∥∥(‖Πa‖2 − 1) + (‖Πb‖2 − 1) + (‖a− b‖2 − ‖Πa−Πb‖2)
∥∥∥
p

≤ 1

2

∥∥∥‖Πa‖2 − 1
∥∥∥
p

+
∥∥∥‖Πb‖2 − 1

∥∥∥
p

+ ‖a− b‖2
∥∥∥∥∥
∥∥∥∥Π

(
a− b
‖a− b‖

)∥∥∥∥2

− 1

∥∥∥∥∥
p

<

1

2
[εδ1/p + εδ1/p + 4εδ1/p] = 3εδ1/p.

Now, let’s look at ATB. Again write A as having rows xT1 , . . . , x
T
n and B having rows yT1 , . . . , y

T
n .

Define Xij = 1
‖xi‖‖yj‖(〈Πxi,Πyj〉 − 〈xi, yj〉). So we can write

∥∥(ΠA)T (ΠB)−ATB
∥∥2

F
=

r∑
i=1

p∑
j=1

‖xi‖2 ‖yj‖2X2
ij .

4

Since p ≥ 2, ‖·‖p/2 is still a norm, so we apply the triangle inequality to get

∥∥∥∥∥(ΠA)T (ΠB)−ATB
∥∥2

F

∥∥∥
p/2

=

∥∥∥∥∥∥
∑
i,j

‖xi‖2 ‖yj‖2X2
ij

∥∥∥∥∥∥
p/2

≤
∑
i,j

‖xi‖2 ‖yj‖2
∥∥X2

ij

∥∥
p/2

< (3εδ1/p)2
∑
i,j

‖xi‖2 ‖yj‖2

Also note

E
∥∥(ΠA)T (ΠB)−ATB

∥∥p
F

=
∥∥∥∥∥(ΠA)T (ΠB)−ATB

∥∥2

F

∥∥∥p/2
p/2

< (3εδ1/p ‖A‖F ‖B‖F)p.

Now we just apply Markov to get a tail bound.

P
(∥∥(ΠA)T (ΠB)−ATB

∥∥
F
> 3ε ‖A‖F ‖B‖F

)
<

E
∥∥(ΠA)T (ΠB)−ATB

∥∥p
F

(3ε ‖A‖F ‖B‖F)p
< δ.

So we’ve proved that if we have a (ε, δ, p)-JLMP distribution, that’s good enough. How do we pick
such a distribution? Any JL distribution works. For example, we can pick the Π from PSet 1,
Problem 3 (which is due to Thorup and Zhang [8]), with a random sign in each column and m
rows, where m = O(1/ε2) to get a success probability 2/3; this is an (ε, 2/3, 2)-JLMP. This is nice
because it’s a 1-pass algorithm, and we’ve reduced the problem to something we already have some
ideas for.

3 Further Numerical Linear Algebra

Next time, we’ll look at subspace embeddings.

Definition 3. If V ⊆ Rn is a dimension-d linear subspace, we say that Π is an ε subspace embed-
ding for V if for every x ∈ V , ‖Πx‖ = (1± ε) ‖x‖.

We’ll see how subspace embeddings relate to a lot of things we’ve seen. Problem 1 on the current
PSet (due Thursday) shows that for any such V there is a set of N = exp(cd) vectors such that if
Π satisfies the JL lemma conditions on those N vectors then Π is a subspace embedding for V .

References

[1] Kenneth Clarkson, David Woodruff. Numerical Linear Algebra in the Streaming Model. STOC
’09 205–214, 2009.

[2] Don Coppersmith, Shmuel Winograd. Matrix Multiplication via Arithmetic Progressions.
STOC ’87 1–6, 1987.

5

[3] Petros Drineas, Ravi Kannan, Michael Mahoney. Fast Monte Carlo Algorithms for Matrices
I: Approximating Matrix Multiplication. SIAM J. Computing 36, 132–157, 2006.

[4] Daniel M. Kane, Jelani Nelson. Sparser Johnson-Lindenstrauss transforms. SODA, 1195–1206,
2012.

[5] Tamás Sarlós. Improved Approximation Algorithms for Large Matrices via Random Projec-
tions. FOCS, 143–152, 2006.

[6] Andrew James Stothers. On the Complexity of Matrix Multiplication. University of Edinburgh
PhD Thesis, 2010.

[7] Volker Strassen. Gaussian Elimination is not Optimal. Numer. Math., 13:354–356, 1969.

[8] Mikkel Thorup, Yin Zhang. Tabulation-Based 5-Independent Hashing with Applications to
Linear Probing and Second Moment Estimation. SIAM J. Comput., 41(2): 293–331, 2012.

[9] Virginia Vassilevska Williams. Multiplying Matrices Faster than Coppersmith-Winograd.
STOC ’12 887–898, 2012.

6

