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1 Introduction

Today we’re going to go through the analysis of matrix completion. First though, let’s go through
the history of prior work on this problem. Recall the setup and model:

• Matrix completion setup:

– Want to recover M ∈ Rn1×n2 , under the assumption that rank(M) = r, where r is small.

– Only some small subset of the entries (Mij)ij∈Ω are revealed, where Ω ⊂ [n1]× [n2], |Ω| =
m� n1, n2

• Model:

– m times we sample i, j uniformly at random + insert into Ω (so Ω is a multiset).

– Note that the same results hold if we choosem entries without replacement, but it’s easier
to analyze this way. In fact, if you can show that if recovery works with replacement,
then that implies that recovery works without replacement, which makes sense because
you’d only be seeing more information about M .

• We recover M by Nuclear Norm Minimization (NNM):

– Solve the program min ‖X‖∗ s.t. ∀i, j ∈ Ω, Xij = Mij

• [Recht, Fazel, Parrilo ’10] [RFP10] was first to give some rigorous guarantees for NNM.

– As you’ll see on the pset, you can actually solve this in polynomial time since it’s an
instance of what’s known as a semi-definite program.

• [Candés, Recht, ’09] [CR09] was the first paper to show provable guarantees for NNM applied
to matrix completion.

• There were some quantitative improvements (in the parameters) in two papers: [Candés, Tao
’09] [CT10] and [Keshavan, Montanari, Oh ’09] [KMO10]

• Today we’re going to cover an even newer analysis given in [Recht, 2011] [Rec11], which has
a couple of advantages.

– First, it has the laxest of all the conditions.

– Second, it’s also the simplest of all the analyses in the papers.

– Thus, it’s really better in every way there is.

The approach of [Rec11] was inspired by work in quantum tomography [GLF+10]. A more general
theorem than the one proven in class today was later proven by Gross [Gross].
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2 Theorem Statement

We’re almost ready to formally state the main theorem, but need a couple of definitions first.

Definition 1. Let M = UΣV ∗ be the singular value decomposition. (Note that U ∈ Rn1×r and
V ∈ Rn2×r.)

Definition 2. Define the incoherence of the subspace U as µ(U) = n1
r · maxi ‖PUei‖2, where PU

is projection onto U . Similarly, the incoherence of V is µ(V ) = n2
r · maxi ‖PV ei‖2, where PV is

projection onto V .

Definition 3. µ0
def
= max{µ(U), µ(V )}.

Definition 4. µ1
def
= ‖UV ∗‖∞

√
n1n2/r, where ‖UV ‖∞ is the largest magnitude of an entry of UV .

Theorem 1. If m & max{µ2
1, µ0} ·n2r log2(n2) then with high probability M is the unique solution

to the semi-definite program min ‖X‖∗ s.t. ∀i, j ∈ Ω, Xij = Mij.

Note that 1 ≤ µ0 ≤ n2
r . The way µ0 can be n2

r is if a standard basis vector appears in a column of
V , and the way µ0 can get all the way down to 1 is like the best case scenario where all the entries
of V are like 1√

n2
and all the entries of U are like 1√

n1
, so for example if you took a Fourier matrix

and cut off some of its columns. Thus, the condition on m is a good bound if the matrix has low
incoherence.

One might wonder about the necessity of all the funny terms in the condition on m. Unfortunately,
[Candes, Tao, ’09] [CT10] showed m & µ0n2r log(n2) is needed. If you want to have any decent
chance of recovering M over the random choice of Ω using this SDP, then you need to sample at
least that many entries. The condition isn’t completely tight because of the square in the log factor
and the dependence on µ2

1. However, you can show that µ2
1 ≤ µ2

0r.

Just like in compressed sensing, there are also some iterative algorithms to recover M , but we’re
not going to analyze them in class. For example, the SparSA algorithm given in [Wright, Nowak,
Figueiredo ’09] [WNF09] (thanks for Ben Recht for pointing this out to me). That algorithm
roughly looks as follows when one wants to minimize ‖AX −M‖2F + µ‖X‖∗:

Pick X0, and a stepsize t and iterate (a)-(d) some number of times:

(a) Z = Xk − t ·AT (AXk −M)

(b) [U,diag(s), V ] = svd(Z)

(c) r = max(s− µt, 0)

(d) Xk+1 = Udiag(r)V T

As an aside, trace-norm minimization is actually tolerant to noise, but I’m not going to cover that.

3 Analysis

The way that the analysis is going to go is we’re going to condition on lots of good events all
happening, and if those good events happen, then the minimization works. The way I’m going to
structure the proof is I’ll first state what all those events are, then I’ll show why those events make
the minimization work, and finally I’ll bound the probability of those events not happening.
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3.1 Background and more notation

Before I do that, I want to say one things about the trace norm. How many people are familiar
with dual norms? How many people have heard of the Hahn-Banach theorem? OK, good.

Definition 5. 〈A,B〉 def
= Tr(A∗B) =

∑
i,j AijBij

Claim 1. The dual of the trace norm is the operator norm:

‖A‖∗ = sup
B s.t.
‖B‖≤1

〈A,B〉

This makes sense because the dual of `1 for vectors is `∞ and this sort of looks like that because
the trace norm and operator norm are respectively like the `1 and `∞ norm of the singular value
vector. More rigorously, we can prove it by proving inequality in both directions. One direction is
not so hard, but the other requires the following lemma.

Lemma 1.

‖A‖∗︸ ︷︷ ︸
(1)

= min
X,Y s.t.
A=XY ∗

‖X‖F · ‖Y ‖F︸ ︷︷ ︸
(2)

= min
X,Y s.t.
A=XY ∗

1

2

(
‖X‖2F + ‖Y ‖2F

)
︸ ︷︷ ︸

(3)

Proof of lemma.

(2) ≤ (3):
AM-GM inequality: xy ≤ 1

2(x2 + y2).

(3) ≤ (1):

We basically just need to exhibit an X and Y which are give something that is at most the
‖A‖∗. Set X = Y ∗ = A1/2. In general, given f : R+ 7→ R+ , then f(A) = Uf(Σ)V ∗. i.e. write
the SVD of A and apply f to each diagonal entry of Σ. You can easily check that A1/2A1/2 = A
and that the square of the Frobenius norm of A1/2 is exactly the trace norm.

(1) ≤ (2):

Let X,Y be some matrices such that A = XY ∗. Then

‖A‖∗ = ‖XY ∗‖∗

≤ sup
{ai} orthonormal basis
{bi} orthonormal basis

∑
i

〈XY ∗ai, bi〉
This can be seen to be true by letting

ai=vi and bi=ui
(from the SVD), when we get equality.

= sup
···

∑
i

〈Y ∗ai, X∗bi〉

≤ sup
···

∑
i

‖Y ∗ai‖ · ‖X∗bi‖

≤ sup
···

(
∑
i

‖Y ∗ai‖2)1/2(
∑
i

‖X∗bi‖2)1/2 (by Cauchy-Schwarz)

= ‖X‖F · ‖Y ‖F
because {ai},{bi} are orthonormal bases

and the Frobenius norm is rotationally invariant
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Proof of claim.

Part 1:
‖A‖∗ ≤ sup

‖B‖=1
〈A,B〉 .

We show this by writing A = UΣV ∗. Then take B =
∑

i uiv
∗
i . That will give you something on

the right that is at least the trace norm.

As an aside, in general, this is how dual norms are defined. Given a norm ‖·‖X the dual norm
is defined by ‖Z‖X∗ = sup‖Y ‖X≤1 〈Z, Y 〉. In this case, we’re proving the dual of the operator
norm is the trace norm. Or, for example, the dual norm of the Schatten p-norm is the Schatten
q-norm where 1

p + 1
q = 1. As an aside, if X is a normed space with norm ‖ · ‖ then X∗ is the set

of all linear functionals λx : X → R for x ∈ X with dual norm ‖λx‖∗ = supy∈X 〈x, y〉. One can
then map x ∈ X to (X∗)∗ by the evaluation map f : X → (X∗)∗: for λ ∈ X∗, f(x)(λ) = λ(x).
Then f is injective and the norms of x and f(x) are equal by the Hahn Banach theorem, though
f need not be surjective (in the case where it is, X is called a reflexive Banach space). You can
learn more on wiki if you want, or take a functional analysis class.

Part 2:
‖A‖∗ ≥ 〈A,B〉 ∀B s.t. ‖B‖ = 1.

We show this using the lemma.

• Write A = XY ∗ s.t. ‖A‖∗ = ‖X‖F · ‖Y ‖F (lemma guarantees that there exists such an X
and Y ).

• Write B =
∑

i σiaibi,∀i, σi ≤ 1.

Then using a similar argument to last time

〈A,B〉 =

〈
XY ∗,

∑
i

σiaibi

〉
=
∑
i

σi 〈Y ∗ai, X∗bi〉

≤
∑
i

| 〈Y ∗ai, X∗bi〉 |

= ‖X‖F ‖Y ‖ = ‖A‖∗

which concludes the proof of the claim.

Recall that the set of matrices that are n1 × n2 is itself a vector space. I’m going to decompose
that vector space into T and the orthogonal complement of T by defining the following projection
operators.

• PT⊥(Z)
def
= (I − PU )Z(I − PV )

• PT (Z)
def
= Z − PT⊥(Z)
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So basically, the matrices that are in the vector space T⊥ are the matrices that can be written
as the sum of rank 1 matrices aib

∗
i where the ai’s are orthogonal to all the u’s and the bi’s are

orthogonal to all the v’s. Also define RΩ(Z) as only keeping entries in Ω, multiplied by multiplicity
in Ω. If you think of the operator RΩ : Rn1n2 7→ Rn1n2 as a matrix, it is a diagonal matrix with the
multiplicity of entries in Ω on the diagonal.

3.2 Good events

With high probability—probability 1− 1
poly(n2) , and you can make the 1

poly(n2) factor decay as much
as you want by increasing the constant in from of m—all these events happen:

1. n1n2
m ·

∥∥∥PTRΩPT − m
n1n2

PT

∥∥∥ .
√

µ0r(n1+n2) log(n2)
m � 1

2

(this is a deviation inequality from the expectation over the randomness coming from Ω)

2.
∥∥(n1n2

m RΩ − I)Z
∥∥ .

√
n1n2

2 log(n1+n2)
m ‖Z‖∞

(this is another deviation inequality from the expectation)

3. If Z ∈ T then
∥∥n1n2

m PTRΩ(Z)− Z
∥∥
∞ .

√
µ0rn2 log(n2)

m ‖Z‖∞

4. ‖RΩ‖ . log(n2)

This one is actually really easy (also the shortest): it’s just balls and bins. We’ve already said
it’s a diagonal matrix, so the operator norm is just the largest diagonal entry. Imagine we
have m balls, and we’re throwing them independently at random into n1n2 bins, namely the
diagonal entries, and this is just how loaded is the maximum bin. In particular, m < n1n2, or
else we wouldn’t be doing matrix completion since we’d have the whole matrix. In general,
when you throw t balls into t bins, the maximum load by the Chernoff bound is at most log t.
In fact, it’s at most log t/ log log t, but who cares, since that would save us an extra log log
somewhere. Actually, I’m not even sure it would save us that since there are other log’s that
come into play.

5. ∃Y in range(RΩ) s.t.

(5a) ‖PT (Y )− UV ∗‖F ≤
√

r
2n2

(5b) ‖PT⊥(Y )‖ < 1
2

3.3 Recovery conditioned on good events

Now that we’ve stated all these things, let’s show that they imply trace norm minimization actually
works. We want to make sure

arg min
X s.t.

RΩ(X)=RΩ(M)

‖X‖∗

is unique and equal to M .
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Let Z ∈ Ker(RΩ), (Z 6= 0); we want to show ‖M + Z‖∗ > ‖M‖∗.

First we want to argue that ‖PT (Z)‖F cannot be big.

Lemma 2. ‖PT (Z)‖F .
√

n2
2r · ‖PT⊥(Z)‖F

Proof.
0 = ‖RΩ(Z)‖F ≥ ‖RΩ(PT (Z))‖F − ‖RΩ(PT⊥(Z))‖F

Also

‖RΩ(PT (Z))‖2F = 〈RΩPTZ,RΩPTZ〉
≥ 〈PTZ,RΩPTZ〉
= 〈Z,PTRΩPTZ〉
= 〈PTZ,PTRΩPTPTZ〉

=

〈
PTZ,

m

n1n2
PTPTZ

〉
−
〈
PTZ, (PTRΩPT −

m

n1n2
)PTZ

〉
≥ m

n1n2
‖PTZ‖2F −

∥∥∥∥PTRΩPT −
m

n1n2

∥∥∥∥ · ‖PTZ‖2F
≥ m

n1n2
· ‖PTZ‖2F

Also have

‖RΩ(PT⊥(Z))‖2F ≤ ‖RΩ‖2 · ‖PT⊥(Z)‖2F
. log2(n2) · ‖PT⊥(Z)‖2F

Summarize: combining all the inequalities together, and then making use of our choice of m,

‖PT (Z)‖F .

√
n1n2 log2(n2)

m
· ‖PT⊥(Z)‖F

.

√
n2

2r
· ‖PT⊥(Z)‖F

Pick U⊥, V⊥ s.t. 〈U⊥V ∗⊥, PT⊥(Z)〉 = ‖PT (Z)‖∗ and s.t. [U,U⊥], [V, V⊥] orthogonal matrices. We
know from claim 1 that the trace norm is exactly the sup over all B matrices of the inner product.
But the B matrix that achieves the sup has all singular values equal to 1, so B = U⊥V

∗
⊥, because

PT⊥(Z) is in the orthogonal space so B should also be in the orthogonal space.

Now we have a long chain of inequalities to show that the trace of any M + Z is greater than the
trace of M :
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‖M + Z‖∗ ≥ 〈UV
∗ + U⊥V

∗
⊥,M + Z〉 by claim 1

= ‖M‖∗ + 〈UV ∗ + U⊥V
∗
⊥, Z〉 since M ⊥ U⊥V ∗⊥

= ‖M‖∗ + 〈UV ∗ + U⊥V
∗
⊥ − Y, Z〉

since Z∈ker(RΩ)
and Y ∈range(RΩ)

= ‖M‖∗ + 〈UV ∗ − PT (Y ), PT (Z)〉+ 〈U⊥V ∗⊥ − PT⊥(Y ), PT⊥(Z)〉 decomposition into T & T⊥

≥ ‖M‖∗ − ‖UV
∗ − PT (Y )‖F · ‖PT (Z)‖F 〈x,y〉≤‖x‖2‖y‖2

+ ‖PT⊥(Z)‖∗ by our choice of UV ∗

− ‖PT⊥(Y )‖ · ‖PT⊥(Z)‖F norm inequality

But note that the operator norm is always bigger than the Frobenius norm, so ‖PT⊥(Z)‖∗ ≥
‖PT⊥(Z)‖F . We want to ensure that that term is strictly bigger than the two negative terms. By
condition (5b), we ensure that ‖PT⊥(Y )‖ · ‖PT⊥(Z)‖F < 1

2 ‖PT⊥(Z)‖F . By condition (5a) and
lemma 2, we can also ensure that ‖UV ∗ − PT (Y )‖F · ‖PT (Z)‖F <

1
2 ‖PT⊥(Z)‖F . Thus, back to the

main equation:

‖M + Z‖∗ > ‖M‖∗ −
√

r

2n2
‖PT (Z)‖F +

1

2
‖PT⊥(Z)‖F � ‖M‖∗

Hence, when all of the good conditions hold, minimizing the trace norm recovers M .

3.4 Probability of good events holding

Unfortunately, we do not have enough time to go through the full analysis. We might overflow some
of this into next lecture, but for now, let’s introduce the noncommutative Bernstein inequality we
use to get conditions (1) and (2). As an aside, I tend to call all of these inequalities Chernoff
inequalities, since they’re all quite similar, but this one really should have a different name because
it the proof for this matrix Bernstein is very different from the proof of ordinary Chernoff.

Theorem 2 (Non-commutative Bernstein Chernoff inequality). Suppose X1, . . . , XN are random
matrices of the same dimensions and EXi = 0 s.t.

1. ‖Xi‖ ≤ M, ∀i w.p. 1

2. σ2
i = max{‖EXiX

∗
i ‖ , ‖EX∗iXi‖}

Then

P

(∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥ > λ

)
. (n1 + n2) ·max

{
exp

(
−Cλ2

εσ2
i

)
, exp

(
−Cλ
M

)}

As mentioned, conditions (2) and (3) were deviation inequalities from expectation, so we can
get them using Bernstein on the random matrices over distribution of Ω (subtracting out the
expectation to set expectation 0 where appropriate).

As an additional aside, conditions (4), (5), and (1) were used in the proofs above. However, we
only need conditions (2) and (3) to show (5). Next time if we have time, we might say something
about proving (5).
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4 Concluding remarks

Why would you think of trace minimization as solving matrix completion? Analogously, why would
you use `1 minimization for compressed sensing? In some way, these two questions are very similar
in that rank is like the support size of the singular value vector, and trace norm is the `1 norm
of the singular value vector, so the two are very analogous. `1 minimization seems like a natural
choice, since it is the closest convex function to support size from all the `p norms (and being
convex allows us to solve the program in polynomial time).
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