CS 229r: Algorithms for Big Data Fall 2013

Lecture 5 — September 17, 2013

Prof. Jelani Nelson Scribe: Cameron Musco

1 Overview

In this lecture we will continue going over turnstyle streams. The set up here is a vector & € R"
initialized to 0 and receiving updates of the form x; < x; + v where we can have v < 0 or v > 0.
We will consider three algorithms under using this model:

1. Point Query: given i output x; &+ error

2. Heavy Hitters: output/estimate ¢ — HH? = {i : |z;|P > ¢||z|}

3. Sparse Approximation: recover & sparse such that || — &||is small.

We will use 2 algorithms to solve all these problems: COUNT MIN SKETCH and COUNT SKETCH

2 Count Min Sketch

An algorithm for Point Query first given in: [2] by Cormode and Muthukrishnan.
Algorithm:

e Maintain at ¢ x w matrix of counters. For each of our ¢ rows of counters, we have an associated
hash function h; : [n] — [w]. hi,...h; are chosen independently at random from a 2-wise
independent family.

e Upon receiving the increment of value v to index 4, hash ¢ using each of our ¢ hash functions.
Add v to the counter Cj, ;) for each j € [t].

e Output PointQuery(i) = minjci Cj ;)

For the analysis, we assume that Viz; > 0. That is, although we can have negative values of v,
none of the counters ever drops below 0. This is also known as the strict turnstile assumption.

Claim 1. Ift > log2(%) and w > % then P(PointQuery(i) € [x; — €||lx||1,x; + €||x|1]) > 1 -9

Proof. For any j € [m],
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where §, is the indicator function with value 1 if h;(r) = h;(i), 0 otherwise.

Using the fact that our hash functions come from a 2-wise independent family we have:
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Applying Markov’s Inequality (and using the assumption that each x; is nonnegative) gives:
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So, Cj u;(iy = x; and with probability > 1/2, Cj i, ;) < €llz[x

Since we are repeating t = logy(§) times,
P(?éi[ﬂcj,Hj(i) >z + el|zll1) = P(Vj € [t], Cjm,i) > ellellr)
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Note: The error guarantee is only really meaningful if ; > €||z||, so only really meaningful for 1

of the values in x.

Note 2: If we throw out the strict turnstile assumption and let the z;’s be negative, we can use a
similar algorithm except output the median of our ¢ counters for x;. Setting w to something like £,
lets us use Markov’s to bound the noise to be less than €||x||; with probabilitiy > 2/3. We can then
apply the Chernoff bound to show that our median will fall within e error with high probability.

3 Heavy Hitters - with Count Min
Definition 2. ¢ — HH' = {i : |x;| > ¢||z|1}
Goal: Output a list L C [n] such that

e p—HH'CL
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Easy but slow to compute L algorithm:

e Use Count Min, setting 6 < I and € = ¢/4. Run PointQuery(i) for each i, and add i to L if
PointQuery(i) > 2¢||z|1. (Can get ||z||; simply by summing one of the rows of counters)



Claim 3. Algorithm satisfies the goal conditions with probability > 1 —

We add all actual ¢ heavy hitters to L and only add a < ¢/2 heavy hitter with probability at most
= % So, by a union bound, with our n point queries we only add a less than % heavy hitter with

probability at most
Space: t = log,(3) = log(%) and w = 2

is 0(log(g/‘v))

= O(é) so our total space (the size of our counter matrix

Time: The downside. Runtime to output L is ©(n logn)

Faster ¢o-HH algorithm:

Create a perfect binary tree using our n vector elements as the leaves.
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Define I to be the partition of [n] into buckets of size 27: {{1,2,...27},{27 +1,27 +2,..27F1} .}
At the j row of our binary tree where j € [0,...,logy(n)] we have n/2/ buckets. We can view
these as forming a vector 27 € R"/? where

(xj)i = Z Lr

reith partition of I7

Now our algorithm is:

e Run Count Min Sketch log,(n)+1 times - once on each vector 2/, where j € [0, ...logy(n)+1].
Run with error € = % and § = 102&)

e Move down the tree starting from the root. For each node, run PointQuery for each of its
two children. If a child is a heavy hitter, i.e. PointQuery returns > %ngle, continue moving
down that branch of the tree.

e Add to L any leaf of the tree that you point query and that has PointQuery(i) > 2| z|:.

Correctness: If a leaf is a heavy hitter, then all of its ancestors must also be heavy hitters. So
we will eventually point query every leaf that is a heavy hitter and at it to L. On each level of the



tree we can have only O(%) heavy hitters. So we make O(%) point queries total. Again using a

¢
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union bound, we have a < § = chance of failing on each of these queries so a < - chance of

failing at all.

Time to Recover L: We improved from n point queries to log(n)/¢ point queries. The total time

is the number of point queries times ¢ = log(%). So the total time is: O <1°gq§") * log <loig")>)

Space: O(1log(3) xlog(n)) = O (% * [log(%) + log log(n)])

Note: Why do we have to use more space to make recovering L faster? Jelani doesn’t know.
Possible final project idea.

4 Sparse Approximation

Goal: Recover k-sparse ¥ € R" such that ||z — Z[|oc < azgik)ll1 where o > 1.

Definition 4. @1y s ® but with the heaviest k coordinates in magnitude zero’d out.

. . . . 1 o
Claim 5. PointQuery on Count Min with § = o and w = O(k) works to solve k-sparse recovery.

Proof. Define L to be the top k coordinates in = by magnitude. L C [n], and |L| = k.

CJ,HJ(’L) — xi + Z 1‘7«57« + Z $7-6r
reL,r#i r¢&L,r#i

We can bound the error arising from r ¢ k as before. E(error) = W And if w = O(%)

we expect something like « collisions with heavy elements in L. With big enough ¢, by Markov’s
inequality, we are very likely not to have a collision at all. So, with high probability, our error on

each element is O( ”xmii}(’“)”l) =0O( ”gct”,i(k)”l ), giving us the guarantee we were looking for.

5 Count Sketch

Given in [1].

Basically, keep a table of counters as in Count Min Sketch. With each associated row i € [t] we
have a hash function h; : [n] — [w] as before. We also have a hash function o; : [n] — {—1, 1}, with
each o chosen independently at random.

Ci,]' = Zr:hi(r):j Ui(r) * Ty

Basically, doing a similar analysis to problem 3 of Pset 1, we can show that 0]2 h() = x? + noise
g

and can bound the noise and show that taking the medians of the counters gives good estimates

with high probability.
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