
CS 229r: Algorithms for Big Data Fall 2013

Lecture 5 — September 17, 2013

Prof. Jelani Nelson Scribe: Cameron Musco

1 Overview

In this lecture we will continue going over turnstyle streams. The set up here is a vector x ∈ Rn
initialized to 0 and receiving updates of the form xi ← xi + v where we can have v ≤ 0 or v > 0.
We will consider three algorithms under using this model:

1. Point Query: given i output xi ± error

2. Heavy Hitters: output/estimate φ−HHp = {i : |xi|p ≥ φ‖x‖pp}

3. Sparse Approximation: recover x̃ sparse such that ‖x− x̃‖is small.

We will use 2 algorithms to solve all these problems: Count Min Sketch and Count Sketch

2 Count Min Sketch

An algorithm for Point Query first given in: [2] by Cormode and Muthukrishnan.

Algorithm:

• Maintain at t×w matrix of counters. For each of our t rows of counters, we have an associated
hash function hi : [n] → [w]. h1, ...ht are chosen independently at random from a 2-wise
independent family.

• Upon receiving the increment of value v to index i, hash i using each of our t hash functions.
Add v to the counter Cj,hj(i) for each j ∈ [t].

• Output PointQuery(i) = minj∈[t]Cj,Hj(i)

For the analysis, we assume that ∀ixi ≥ 0. That is, although we can have negative values of v,
none of the counters ever drops below 0. This is also known as the strict turnstile assumption.

Claim 1. If t ≥ log2(
1
δ) and w ≥ 2

ε then P(PointQuery(i) ∈ [xi − ε‖x‖1, xi + ε‖x‖1]) ≥ 1− δ

Proof. For any j ∈ [m],

Cj,Hj(i) = xi +
∑

r:hj(r)=hj(i),r 6=i

xr

= xi +
∑
r 6=i

δrxr︸ ︷︷ ︸
noise

1

where δr is the indicator function with value 1 if hj(r) = hj(i), 0 otherwise.

Using the fact that our hash functions come from a 2-wise independent family we have:

E
∑
r 6=i

δrxr =

∑
r 6=i xr

w
≤ ε

2
‖x‖1

Applying Markov’s Inequality (and using the assumption that each xi is nonnegative) gives:

P(noise > ε‖x‖1) ≤
1

2

So, Cj,Hj(i) ≥ xi and with probability > 1/2, Cj,Hj(i) ≤ ε‖x‖1

Since we are repeating t = log2(
1
δ) times,

P(min
j∈[t]

Cj,Hj(i) > xi + ε‖x‖1) = P(∀j ∈ [t], Cj,Hj(i) > ε‖x‖1)

<
1

2t

< δ

Note: The error guarantee is only really meaningful if xi > ε‖x‖, so only really meaningful for 1
ε

of the values in x.

Note 2: If we throw out the strict turnstile assumption and let the xi’s be negative, we can use a
similar algorithm except output the median of our t counters for xi. Setting w to something like ε

3 ,
lets us use Markov’s to bound the noise to be less than ε‖x‖1 with probabilitiy > 2/3. We can then
apply the Chernoff bound to show that our median will fall within ε error with high probability.

3 Heavy Hitters - with Count Min

Definition 2. φ−HH1 = {i : |xi| ≥ φ‖x‖1}

Goal: Output a list L ⊆ [n] such that

• φ−HH1 ⊆ L

• if i ∈ L, i ∈ φ
2 −HH

1

Easy but slow to compute L algorithm:

• Use Count Min, setting δ < γ
n and ε = φ/4. Run PointQuery(i) for each i, and add i to L if

PointQuery(i) > 3
4φ‖x‖1. (Can get ‖x‖1 simply by summing one of the rows of counters)

2

Claim 3. Algorithm satisfies the goal conditions with probability > 1− γ

We add all actual φ heavy hitters to L and only add a < φ/2 heavy hitter with probability at most
δ = γ

n So, by a union bound, with our n point queries we only add a less than φ
2 heavy hitter with

probability at most γ

Space: t = log2(
1
δ) = log(nγ) and w = 2

e = O(1
φ) so our total space (the size of our counter matrix

is O(log(n/γ)
φ

)

Time: The downside. Runtime to output L is Θ(n log n)

Faster φ-HH algorithm:

Create a perfect binary tree using our n vector elements as the leaves.

{1, 2, ...n}

{1, 2, ...n/2}

...

1 2 . . .

...

{n/2 + 1, ...n}

...
...

. . . n− 1 n

Define IJ to be the partition of [n] into buckets of size 2j : {{1, 2, ...2j}, {2j + 1, 2j + 2, ...2j+1}, ...}.
At the jth row of our binary tree where j ∈ [0, . . . , log2(n)] we have n/2j buckets. We can view
these as forming a vector xj ∈ Rn/2j where

(xj)i =
∑

r∈ith partition of Ij

xr

Now our algorithm is:

• Run Count Min Sketch log2(n)+1 times - once on each vector xj , where j ∈ [0, ... log2(n)+1].
Run with error ε = φ

4 and δ = γφ
log(n)

• Move down the tree starting from the root. For each node, run PointQuery for each of its
two children. If a child is a heavy hitter, i.e. PointQuery returns ≥ 3

4φ‖x‖1, continue moving
down that branch of the tree.

• Add to L any leaf of the tree that you point query and that has PointQuery(i) ≥ 3
4φ‖x‖1.

Correctness: If a leaf is a heavy hitter, then all of its ancestors must also be heavy hitters. So
we will eventually point query every leaf that is a heavy hitter and at it to L. On each level of the

3

tree we can have only O(1
φ) heavy hitters. So we make O(log(n)φ) point queries total. Again using a

union bound, we have a < δ = γφ
log(n) chance of failing on each of these queries so a < γ chance of

failing at all.

Time to Recover L: We improved from n point queries to log(n)/φ point queries. The total time

is the number of point queries times t = log(1d). So the total time is: O
(
log(n)
φ ∗ log

(
log(n)
φγ

))
Space: O(1ε log(1δ) ∗ log(n)) = O

(
log(n)
φ ∗ [log(1

φγ) + log log(n)]
)

Note: Why do we have to use more space to make recovering L faster? Jelani doesn’t know.
Possible final project idea.

4 Sparse Approximation

Goal: Recover k-sparse x̃ ∈ Rn such that ‖x− x̃‖∞ ≤ α‖xtail(k)‖1 where α > 1.

Definition 4. xtail(k) is x but with the heaviest k coordinates in magnitude zero’d out.

Claim 5. PointQuery on Count Min with δ = 1
γn and w = O(k) works to solve k-sparse recovery.

Proof. Define L to be the top k coordinates in x by magnitude. L ⊆ [n], and |L| = k.

Cj,Hj(i) = xi +
∑

r∈L,r 6=i
xrδr +

∑
r/∈L,r 6=i

xrδr

We can bound the error arising from r /∈ k as before. E(error) =
‖xtail(k)‖1

w . And if w = O(ckα)
we expect something like α collisions with heavy elements in L. With big enough c, by Markov’s
inequality, we are very likely not to have a collision at all. So, with high probability, our error on

each element is O(
‖xtail(k)‖1

w) = O(
‖xtail(k)‖1

k), giving us the guarantee we were looking for.

5 Count Sketch

Given in [1].

Basically, keep a table of counters as in Count Min Sketch. With each associated row i ∈ [t] we
have a hash function hi : [n]→ [w] as before. We also have a hash function σi : [n]→ {−1, 1}, with
each σ chosen independently at random.

Ci,j =
∑

r:hi(r)=j
σi(r) ∗ xr

Basically, doing a similar analysis to problem 3 of Pset 1, we can show that C2
j,hj(i)

= x2i + noise

and can bound the noise and show that taking the medians of the counters gives good estimates
with high probability.

4

References

[1] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theor. Comput. Sci., 312(1):3–15, January 2004.

[2] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

5

