Fall 2013

Lecture 5 — September 17, 2013

Prof. Jelani Nelson

Scribe: Cameron Musco

# 1 Overview

In this lecture we will continue going over turnstyle streams. The set up here is a vector  $\boldsymbol{x} \in \mathbb{R}^n$  initialized to **0** and receiving updates of the form  $x_i \leftarrow x_i + v$  where we can have  $v \leq 0$  or v > 0. We will consider three algorithms under using this model:

- 1. Point Query: given *i* output  $x_i \pm error$
- 2. Heavy Hitters: output/estimate  $\phi HH^p = \{i : |x_i|^p \ge \phi \|\boldsymbol{x}\|_p^p\}$
- 3. Sparse Approximation: recover  $\tilde{x}$  sparse such that  $||x \tilde{x}||$  is small.

We will use 2 algorithms to solve all these problems: COUNT MIN SKETCH and COUNT SKETCH

## 2 Count Min Sketch

An algorithm for Point Query first given in: [2] by Cormode and Muthukrishnan.

#### Algorithm:

- Maintain at  $t \times w$  matrix of counters. For each of our t rows of counters, we have an associated hash function  $h_i : [n] \to [w]$ .  $h_1, \dots h_t$  are chosen independently at random from a 2-wise independent family.
- Upon receiving the increment of value v to index i, hash i using each of our t hash functions. Add v to the counter  $C_{j,h_i(i)}$  for each  $j \in [t]$ .
- Output  $PointQuery(i) = \min_{j \in [t]} C_{j,H_j(i)}$

For the analysis, we assume that  $\forall ix_i \geq 0$ . That is, although we can have negative values of v, none of the counters ever drops below 0. This is also known as the **strict turnstile assumption**.

Claim 1. If  $t \ge \log_2(\frac{1}{\delta})$  and  $w \ge \frac{2}{\epsilon}$  then  $\mathbb{P}(PointQuery(i) \in [x_i - \epsilon \|\boldsymbol{x}\|_1, x_i + \epsilon \|\boldsymbol{x}\|_1]) \ge 1 - \delta$ 

*Proof.* For any  $j \in [m]$ ,

$$C_{j,H_j(i)} = x_i + \sum_{\substack{r:h_j(r) = h_j(i), r \neq i \\ = x_i + \sum_{\substack{r \neq i \\ noise}} \delta_r x_r}} x_r$$

where  $\delta_r$  is the indicator function with value 1 if  $h_j(r) = h_j(i)$ , 0 otherwise.

Using the fact that our hash functions come from a 2-wise independent family we have:

$$\mathbb{E}\sum_{r\neq i}\delta_r x_r = \frac{\sum_{r\neq i} x_r}{w} \le \frac{\epsilon}{2} \|\boldsymbol{x}\|_1$$

Applying Markov's Inequality (and using the assumption that each  $x_i$  is nonnegative) gives:

$$\mathbb{P}(noise > \epsilon \|\boldsymbol{x}\|_1) \le \frac{1}{2}$$

So,  $C_{j,H_j(i)} \ge x_i$  and with probability > 1/2,  $C_{j,H_j(i)} \le \epsilon \|\boldsymbol{x}\|_1$ Since we are repeating  $t = \log_2(\frac{1}{\delta})$  times,

$$\mathbb{P}(\min_{j\in[t]} C_{j,H_j(i)} > x_i + \epsilon \|\boldsymbol{x}\|_1) = \mathbb{P}(\forall j \in [t], \ C_{j,H_j(i)} > \epsilon \|\boldsymbol{x}\|_1)$$
$$< \frac{1}{2^t}$$
$$< \delta$$

| - | - | - | - |
|---|---|---|---|
|   |   |   |   |
| L |   |   | I |
|   |   |   |   |
|   |   |   |   |

Note: The error guarantee is only really meaningful if  $x_i > \epsilon || \boldsymbol{x} ||$ , so only really meaningful for  $\frac{1}{\epsilon}$  of the values in  $\boldsymbol{x}$ .

Note 2: If we throw out the strict turnstile assumption and let the  $x_i$ 's be negative, we can use a similar algorithm except output the median of our t counters for  $x_i$ . Setting w to something like  $\frac{\epsilon}{3}$ , lets us use Markov's to bound the noise to be less than  $\epsilon ||\mathbf{x}||_1$  with probability > 2/3. We can then apply the Chernoff bound to show that our median will fall within  $\epsilon$  error with high probability.

### **3** Heavy Hitters - with Count Min

**Definition 2.**  $\phi - HH^1 = \{i : |x_i| \ge \phi || x ||_1\}$ 

**Goal:** Output a list  $L \subseteq [n]$  such that

- $\bullet \ \phi HH^1 \subseteq L$
- if  $i \in L$ ,  $i \in \frac{\phi}{2} HH^1$

#### Easy but slow to compute L algorithm:

• Use Count Min, setting  $\delta < \frac{\gamma}{n}$  and  $\epsilon = \phi/4$ . Run PointQuery(i) for each *i*, and add *i* to *L* if  $PointQuery(i) > \frac{3}{4}\phi \|\boldsymbol{x}\|_1$ . (Can get  $\|\boldsymbol{x}\|_1$  simply by summing one of the rows of counters)

**Claim 3.** Algorithm satisfies the goal conditions with probability  $> 1 - \gamma$ 

We add all actual  $\phi$  heavy hitters to L and only add a  $\langle \phi/2 \rangle$  heavy hitter with probability at most  $\delta = \frac{\gamma}{n}$  So, by a union bound, with our n point queries we only add a less than  $\frac{\phi}{2}$  heavy hitter with probability at most  $\gamma$ 

**Space:**  $t = \log_2(\frac{1}{\delta}) = \log(\frac{n}{\gamma})$  and  $w = \frac{2}{e} = O(\frac{1}{\phi})$  so our total space (the size of our counter matrix is  $O(\frac{\log(n/\gamma)}{\phi})$ )

**Time:** The downside. Runtime to output L is  $\Theta(n \log n)$ 

#### Faster $\phi$ -HH algorithm:

Create a perfect binary tree using our n vector elements as the leaves.



Define  $I^{J}$  to be the partition of [n] into buckets of size  $2^{j}$ :  $\{\{1, 2, ..., 2^{j}\}, \{2^{j} + 1, 2^{j} + 2, ..., 2^{j+1}\}, ...\}$ . At the  $j^{th}$  row of our binary tree where  $j \in [0, ..., \log_{2}(n)]$  we have  $n/2^{j}$  buckets. We can view these as forming a vector  $x^{j} \in \mathbb{R}^{n/2^{j}}$  where

$$(x^j)_i = \sum_{r \in i^{th} \text{ partition of } I^j} x_r$$

Now our algorithm is:

- Run Count Min Sketch  $\log_2(n) + 1$  times once on each vector  $x^j$ , where  $j \in [0, \dots \log_2(n) + 1]$ . Run with error  $\epsilon = \frac{\phi}{4}$  and  $\delta = \frac{\gamma \phi}{\log(n)}$
- Move down the tree starting from the root. For each node, run *PointQuery* for each of its two children. If a child is a heavy hitter, i.e. *PointQuery* returns  $\geq \frac{3}{4}\phi ||x||_1$ , continue moving down that branch of the tree.
- Add to L any leaf of the tree that you point query and that has  $PointQuery(i) \geq \frac{3}{4}\phi ||x||_1$ .

**Correctness:** If a leaf is a heavy hitter, then all of its ancestors must also be heavy hitters. So we will eventually point query every leaf that is a heavy hitter and at it to L. On each level of the

tree we can have only  $O(\frac{1}{\phi})$  heavy hitters. So we make  $O(\frac{\log(n)}{\phi})$  point queries total. Again using a union bound, we have a  $<\delta = \frac{\gamma\phi}{\log(n)}$  chance of failing on each of these queries so a  $<\gamma$  chance of failing at all.

**Time to Recover L:** We improved from *n* point queries to  $\log(n)/\phi$  point queries. The total time is the number of point queries times  $t = \log(\frac{1}{d})$ . So the total time is:  $O\left(\frac{\log(n)}{\phi} * \log\left(\frac{\log(n)}{\phi\gamma}\right)\right)$ 

**Space:**  $O(\frac{1}{\epsilon}\log(\frac{1}{\delta}) * \log(n)) = O\left(\frac{\log(n)}{\phi} * [\log(\frac{1}{\phi\gamma}) + \log\log(n)]\right)$ 

Note: Why do we have to use more space to make recovering L faster? Jelani doesn't know. Possible final project idea.

### 4 Sparse Approximation

**Goal:** Recover k-sparse  $\tilde{x} \in \mathbb{R}^n$  such that  $||x - \tilde{x}||_{\infty} \leq \alpha ||x_{tail(k)}||_1$  where  $\alpha > 1$ .

**Definition 4.**  $x_{tail(k)}$  is x but with the heaviest k coordinates in magnitude zero'd out.

**Claim 5.** PointQuery on Count Min with  $\delta = \frac{1}{\gamma n}$  and w = O(k) works to solve k-sparse recovery.

*Proof.* Define L to be the top k coordinates in x by magnitude.  $L \subseteq [n]$ , and |L| = k.

$$C_{j,H_j(i)} = x_i + \sum_{r \in L, r \neq i} x_r \delta_r + \sum_{r \notin L, r \neq i} x_r \delta_r$$

We can bound the error arising from  $r \notin k$  as before.  $\mathbb{E}(error) = \frac{\|x_{tail(k)}\|_1}{w}$ . And if  $w = O(\frac{ck}{\alpha})$  we expect something like  $\alpha$  collisions with heavy elements in L. With big enough c, by Markov's inequality, we are very likely not to have a collision at all. So, with high probability, our error on each element is  $O(\frac{\|x_{tail(k)}\|_1}{w}) = O(\frac{\|x_{tail(k)}\|_1}{k})$ , giving us the guarantee we were looking for.

### 5 Count Sketch

Given in [1].

Basically, keep a table of counters as in Count Min Sketch. With each associated row  $i \in [t]$  we have a hash function  $h_i : [n] \to [w]$  as before. We also have a hash function  $\sigma_i : [n] \to \{-1, 1\}$ , with each  $\sigma$  chosen independently at random.

$$C_{i,j} = \sum_{r:h_i(r)=j} \sigma_i(r) * x_r$$

Basically, doing a similar analysis to problem 3 of Pset 1, we can show that  $C_{j,h_j(i)}^2 = x_i^2 + noise$ and can bound the noise and show that taking the medians of the counters gives good estimates with high probability.

# References

- [1] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. *Theor. Comput. Sci.*, 312(1):3–15, January 2004.
- [2] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.