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1 Overview

In the last lecture we proved several space lower bounds for streaming algorithms using the com-
munication complexity model, and some ideas from information theory.

In this lecture we will move onto the next topic: dimensionality reduction.

2 Dimensionality Reduction

Dimensionality reduction is useful when solving high-dimensional computational geometry prob-
lems, such as:

• clustering

• nearest neighbors search

• numerical linear algebra (on big matrices)

The main idea of dimensionality reduction is to reduce the dimensionality of the input while
preserving the geometric structure of the input.

Reducing the dimensionality of the input enables our algorithms to run faster, but since we preserve
the geometric structure of the input, our algorithms are still approximately correct

2.1 Distortion

Definition 1. Suppose we have two metric spaces, (X, dX), and (Y, dY ), and a function f : X → Y .
Then f has distortion Df if ∀x, x′ ∈ X, C1 · dX(x, x′) ≤ dY (f(x), f(x′)) ≤ C2 · dX(x, x′), where
C2
C1

= Df .

We will focus on spaces in which dX(x, x′) = ‖x− x′‖X (ie. normed spaces).

2.2 Limitations of Dimensionality Reduction

If ‖ · ‖X is the l1 norm, then Df ≤ C =⇒ in worst case, target dimension is nΩ( 1
C2 ). That is, there

exists a set of n points X, such that for all functions f : (X, l1) → (X ′, lm1 ), with distortion ≤ C,

then m must be at least nΩ( 1
C2 )[1].
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3 Johnson-Lindenstrauss lemma

The Johnson-Lindenstrauss (JL) lemma [2] states that for all ε ∈ (0, 1
2), ∀x1, ..., xn ∈ l2, there exists

Π ∈ Rm×n, m = O( 1
ε2

log(n)) such that for all i, j , (1−ε)‖xi−xj‖2 ≤ ‖Πxi−Πxj‖2 ≤ (1+ε)‖xi−xj‖2

f : (x, l2)→ (x, lm2 ), f(x) = Πx

Theorem 2 (Johnson and Naor [3]). : Suppose X is a Banach space (complete normed space),
such that for any n point subset, there exists a linear map Π into a linear subspace F ⊆ X of
dimension O(log n) with O(1) distortion. Then for every positive integer k, every k-dimensional

linear subspace of X can be embedded into `2 with distortion at most 22O(log∗ n)
.

In a sense, this theorem states that any complete normed space that enjoys Johnson-Lindenstrauss
type dimensionality reduction is similar to l2.

4 Distributional Johnson-Lindenstrauss lemma

Proofs of the JL lemma typically first prove the distributional JL lemma, which states that for all
0 < ε, δ < 1

2 , there exists a distribution Dε,δ on matrices Π ∈ Rm×n, m = O( 1
ε2

log(1
δ )) such that for

all x ∈ Rn, and Π drawn from the distribution Dε,δ,

P(‖Πx‖2 /∈ [(1− ε)‖x‖2, (1 + ε)‖x‖2] < δ

This is equivalent to saying that for all x of unit Euclidean norm,

P(‖|Πx‖22 − 1)| > ε) < δ (up to changing εby a factor of 2, from the squaring)

Claim 3. Distributional JL lemma implies JL lemma

Proof. Set δ < 1

(n2)
, and union bound over the

(
n
2

)
points, with x =

xi−xj
‖xi−xj‖2

There are various ways to prove the distributional JL lemma

• Johnson and Lindenstrauss’ approach: consider a random rotation, and project onto the first
m coordinates

• other proofs: choose Πi,j independent, mean 0, variance 1
m , and subgaussian (ie. decays at a

rate beneath a constant factor of the Gaussian distribution).

• more proofs: coming in future lectures
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5 Proof of the distributional JL lemma

We will now prove the distributional JL lemma using Π with random sign entries

Πi,j =
σi,j√
m
, σi,j ∈ {−1, 1}

The “usual proof” that this matrix satisfies the conditions of the lemma involves expanding the
expression:

‖Πx‖22 − 1 =
1

m

m∑
r=1

∑
i 6=j

σr,iσr,jxixj := z

Then by some computations,

P(z > ε) = P(etz > etε) <
E etz

etε
by Markov

and also

P(z < −ε) = P(−z > ε) = P(e−tz > etε) <
E e−tz

etε

This approach is not particularly insightful, so instead we will instead present a proof of distribu-
tional JL using the Hanson-Wright inequality.

5.1 Hanson-Wright inequality

Theorem 4 (Hanson-Wright inequality [4] ). Suppose σ = (σ1, ..., σn), a vector of i.i.d. uniform
random signs, A = (aij) ∈ Rn×n

P(|σTAσ − E(σTAσ)| > λ) . e
−min{ c·λ

2

‖A‖2
F

, cλ‖A‖}

‖A‖2F =
∑
a2
ij, ‖A‖ =

√
λmax(ATA) =largest magnitude of eigenvalue of A if A is symmetric.

Claim 5. The Hanson-Wright Inequality implies the distributional JL lemma

Proof. Set λ = ε, ‖Πx‖22 − 1 = σTAxσ, where

Ax =
1

m


xxT 0 ... 0 0

0 xxT ... 0 0
... ... ... ... ...
0 0 ... xxT 0
0 0 ... 0 xxT

 (m blocks each n×n)
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‖Ax‖2F = 1
m2

∑m
r=1

∑
i,j x

2
ix

2
j=

1
m

‖Ax‖ = 1
m(1) = 1

m since xxT has eigenvalue ‖x‖22 = 1 with eigenvector x. Then Hanson-Wright
directly gives the distributional JL lemma.

5.1.1 Useful Theorems and Lemmas

We will prove the Hanson-Wright inequality using the following theorems and lemmas (they have
other applications as well)

Definition 6. For X a random variable, define ‖X‖p = (E |X|p)
1
p

Theorem 7. Minkowski’s inequality: ‖ · ‖p is a norm for p ≥ 1. In other words, the triangle
inequality holds.

Theorem 8 (Jensen’s inequality). If Φ is a convex function (ie. Φ(tx+(1−t)y) ≤ tΦ(x)+(1−t)Φ(y)
for all t ∈ [0, 1], x, y)), then Φ(EX) ≤ EΦ(X)

Claim 9. If 1 ≤ p < q, then ‖X‖p ≤ ‖X‖q

Proof. Use Jensen’s inequality on Φ(z) = |z|q/p, giving (E |X|p)q/p ≤ E |X|q, then take 1/pth powers
on both sides.

Definition 10. The standard normal distribution N(0, 1) is a distribution over R with probability
density function f(t) = 1√

2π
e−t

2/2

Fact 11. If g ∼ N(0, 1), then E gp is 0 if p is odd, and E gp = p!
2p/2·(p/2)!

) when p is even. By

Stirling’s approximation, the latter is O(
√
p)p.

Lemma 12 (Concentration of Lipschitz functions of Gaussians [5]). Suppose f : Rn → R. g =
(g1, ..., gn) is a vector of independent Gaussians N(0, 1). Then

P(|f(g)− E(f(g))| > λ) ≤ 2 · e−cλ
2/‖f‖2lip (1)

where ‖f‖lip = supx,y
|f(x)−f(y)|
‖x−y‖2

(1) ⇐⇒ ∀p ≥ 1, ‖f(g) − E(f(g))‖p ≤
√
p · ‖f‖lip. This implies (1) by Markov’s inequality on the

pth moment.

Lemma 13 (Decoupling). ∑
i 6=j
‖aijσiσj‖p ≤ 4 · ‖

∑
i,j

aijσiσ
′
j‖p

σ = (σ1, ..., σn), σ′ = (σ′1, ..., σ
′
n), all independent random signs.
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5.2 Proof of Hanson-Wright inequality

The following proof was shown to me by Gilles Pisier on a whiteboard in October 2011. It suffices
to show ‖

∑
i 6=j aijσiσj‖p ≤

√
p‖A‖F +p · ‖A‖, since subtracting the expectation removes the trace,

and this moment bound can be plugged into Markov’s inequality with the appropriate pth moment
to get the desired exponential tail bound. Then

‖
∑
i 6=j

aijσiσj‖p ≤ 4 · ‖
∑
i,j

aijσiσ
′
j‖p (by decoupling)

=
4

(E |g|)2
· ‖
∑
i,j

aijσiσ
′
j E |gi| · |g′j |‖p

. ‖
∑
i,j

aijσiσ
′
j · |gi| · |g′j |‖p

= ‖
∑
i,j

aijgig
′
j‖p

= ‖〈Ag′, g〉‖p
.
√
p · ‖‖Ag′‖2‖p

≤ √p
(
‖E ‖Ag′‖2‖p + ‖‖Ag′‖2 − E ‖Ag′‖2‖p

)
(Lp is a norm, Minkowski)

But we have that by Jensen’s inequality, ‖E ‖Ag′‖2‖p ≤ (E ‖Ag′‖22)
1
2 = ‖A‖F .

The other term is bounded by the lemma on Lipschitz functions of Gaussians, on f(g′) = ‖Ag′‖2,
‖f‖lip = ‖A‖, so
||Ag′‖2 − E ‖Ag′‖2‖p ≤

√
p‖A‖, and

√
p
(
‖E ‖Ag′‖2‖p + ||Ag′‖2 − E ‖Ag′‖2‖p

)
≤ √p‖A‖F + p · ‖A‖

completing the proof of the Hanson-Wright inequality.
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