Problem 1: In the matrix completion problem we observe \((M_{i,j})_{(i,j)\in \Omega}\) for some \(m \times n\) rank-\(r\) matrix \(M\) and \(\Omega \subset [m] \times [n]\). We then hope to recover all entries of \(M\) by solving

\[
\begin{align*}
\text{minimize} & \quad \text{rank}(X) \\
\text{s.t.} & \quad \forall (i,j) \in \Omega \quad X_{i,j} = M_{i,j}
\end{align*}
\]

and hope the \(X\) we find equals \(M\). Unfortunately solving the rank minimization problem is NP-hard, so we relax it to

\[
\begin{align*}
\text{minimize} & \quad \|X\|_* \\
\text{s.t.} & \quad \forall (i,j) \in \Omega \quad X_{i,j} = M_{i,j}
\end{align*}
\]

where \(\|X\|_*\) is the nuclear norm of \(X\), i.e. the sum of its singular values. Note the rank is the number of non-zero singular values, and thus this is the matrix analogue of \(\ell_1\) minimization for sparse recovery. In this problem you will show nuclear norm minimization is a semidefinite program, which given known results [1], implies that it can be solved in polynomial time (with some logarithmic dependence on precision).

Before we can show that nuclear norm minimization is a semidefinite program, what is a semidefinite program? It is the problem of finding \(x\) in what follows, given \(c, \{A_i\}_{i=1}^n, B\):

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{s.t.} & \quad A_0 + x_1 A_1 + \ldots + x_n A_n \preceq B
\end{align*}
\]

where \(A_i, B\) are real symmetric matrices of some dimension and \(X \preceq Y\) means \(Y - X\) is positive semidefinite (i.e. \(Y - X\) is symmetric and has all nonnegative eigenvalues).

Now, you will show that in order to solve (2) it suffices to find \(X, Y, Z\) solving

\[
\begin{align*}
\text{minimize} & \quad \text{trace}(Y) + \text{trace}(Z) \\
\text{s.t.} & \quad \forall (i,j) \in \Omega \quad X_{i,j} = M_{i,j} \\
& \quad \begin{pmatrix} Y & X \\ X^T & Z \end{pmatrix} \succeq 0
\end{align*}
\]

(a) (5 points) Show that (4) is indeed a semidefinite program as defined in (3).

Hint: Think of the entries of \(x\) in (3) as being entries in the matrices \(X, Y, Z\).
(b) (5 points) Show that for $X \in \mathbb{R}^{m \times n}$ and $t \in \mathbb{R}$, if $\|X\|_* \leq t$ then there exist matrices $Y \in \mathbb{R}^{m \times m}$ and $Z \in \mathbb{R}^{n \times n}$ such that

$$
\begin{pmatrix}
Y & X \\
X^T & Z
\end{pmatrix} \succeq 0, \quad \text{trace}(Y) + \text{trace}(Z) \leq 2t
$$

Hint: Write the SVD $X = U \Sigma V^T$ and define $Y = U \Sigma U^T + \gamma I$ and $Z = V \Sigma V^T + \gamma I$ for some appropriately chosen γ.

(c) (5 points) Show that if A, B are positive semidefinite, i.e. real and symmetric with nonnegative eigenvalues, then $\text{trace}(AB) \geq 0$.

Hint: For $A = U \Sigma U^T$ and a function $f : \mathbb{R}^+ \to \mathbb{R}^+$, define $f(A) = U f(\Sigma) U^T$ where $f(\Sigma)$ replaces each eigenvalue σ with $f(\sigma)$. Now write $A = A^{1/2} A^{1/2}$ and use the cyclic property of trace ($\text{trace}(XY) = \text{trace}(YX)$ as long as the dimensions work out).

(d) (5 points) Show the converse of (c). That is, for fixed X if Y, Z exist satisfying the conditions of (c), then $\|X\|_* \leq t$. Conclude that solving (2) and (4) are equivalent.

Hint: Write $X = U \Sigma V^T$. Show $\text{trace} \left[\begin{pmatrix} U U^T & -U V^T \\ -V U^T & V V^T \end{pmatrix} \begin{pmatrix} Y & X \\
X^T & Z \end{pmatrix} \right] \succeq 0$, $\text{trace}(UU^T Y) \leq \text{trace}(Y)$, $\text{trace}(VV^T Z) \leq \text{trace}(Z)$. Combine these with cyclic properties of trace and the fact that $\|X\|_* = \text{trace}(\Sigma)$.

(e) (10 points) **Bonus problem:** Consider the problem of finding X, Y, Z solving

$$
\begin{align*}
\text{minimize} \quad & \text{rank}(\text{diag}(Y, Z)) \\
\text{s.t.} \quad & \forall (i, j) \in \Omega \quad X_{i,j} = M_{i,j} \\
& \begin{pmatrix}
Y & X \\
X^T & Z
\end{pmatrix} \succeq 0
\end{align*}
$$

(5)

where $\text{diag}(Y, Z)$ is the block-diagonal matrix with two blocks: the upper-left block is Y, and the bottom-right block is Z. Although we do not have efficient algorithms for solving this problem, show that solving (1) and (5) are equivalent. Thus the program (5) can be seen as a relaxation of (4) since $\text{trace}(Y) + \text{trace}(Z) = \text{trace}(\text{diag}(Y, Z))$.

Hint: Show $\text{rank}(X) \leq r$ iff there exist $Y = Y^T \in \mathbb{R}^{m \times m}, Z = Z^T \in \mathbb{R}^{n \times n}$ with

$$
\begin{pmatrix}
Y & X \\
X^T & Z
\end{pmatrix} \succeq 0
$$

with $\text{rank}(Y) + \text{rank}(Z) \leq 2r$.

References