1 Overview

In the last lecture we discussed how distributional JL implies Gordon’s theorem, and began our discussion of sparse JL. We wrote $\|\Pi x\|^2 = \sigma^T A^T_x A_x \sigma$ and bounded the expression using Hanson-Wright in terms of the Frobenius norm.

In this lecture we’ll bound that Frobenius norm and then discuss applications to fast nearest neighbors.

2 Sparse JL from last time

Note that we defined $B_x = A^T_x A_x$ as the center of the product from before, but with the diagonals zeroed out. B_x is a block-diagonal matrix with m blocks $B_{x,1}, \ldots, B_{x,m}$ with

$$(B_{x,r})_{i,j} = \begin{cases} 0, & i = j \\ \delta_{r,i} \delta_{r,j} x_i x_j, & i \neq j. \end{cases}$$

2.1 Frobenius norm

We can write the Frobenius norm as

$$\|B_x\|_F^2 = \frac{1}{s^2} \sum_{r=1}^{m} \sum_{i \neq j} \delta_{r,i} \delta_{r,j} x_i^2 x_j^2$$

$$= \frac{1}{s^2} \sum_{i \neq j} (\sum_{r=1}^{m} \delta_{r,i} \delta_{r,j}) x_i^2 x_j^2$$

where we define the expression in the parentheses to be Q_{ij}.

Claim 1.

$$\|Q_{ij}\|_p \lesssim p$$

Let’s assume the claim and show that the Frobenius norm is correct.
\[\|\|B_x\|_F\|_p = (\mathbb{E}[\|B_x\|_F]^p)^{1/p} \]
\[= (((\mathbb{E}[\|B_x\|_F^2])^{2/p})^{2/p})^{1/2} \]
\[= \|\|B_x\|_F^2\|_p^{1/2} \]
\[\leq \|\|B_x\|_F^2\|_p^{1/2} \]
\[= \left(\frac{1}{s^2} \sum_{i \neq j} x_i^2 x_j^2 Q_{ij} \right)^{1/2} \]
\[\leq \frac{1}{s} \sum_{i \neq j} x_i^2 x_j^2 Q_{ij}^{1/2} \]
\[\leq \sqrt{p} s \left(\sum_{i \neq j} x_i^2 x_j^2 \right)^{1/2} \]
\[\leq \sqrt{p} s \]
\[\approx \frac{\epsilon}{\sqrt{\ln 1/\delta}} \approx \frac{1}{\sqrt{m}} \]

Now, we can do the following:

\[\|\|\Pi x\|_2^2 - 1\|_p = \|\sigma^T B_x \sigma\|_p \leq \sqrt{\frac{p}{m}} + \frac{p}{s} \]

(Markov) \[\implies \quad \mathbb{P}(\|\|\Pi x\|_2^2 - 1\|_p > \epsilon) \leq \frac{\|\|\Pi x\|_2^2 - 1\|_p^p \epsilon}{\epsilon^p} \]
\[\leq 2^p \cdot \left(\frac{\max\left(\frac{\sqrt{\frac{p}{m}}, \frac{p}{s}}{\epsilon} \right)}{\epsilon} \right)^p < \delta \]

Now we can prove the claim

Proof. Let’s just fix column \(i \). It has \(s \) nonzero elements somewhere. There’s another column \(j \), and the question is how many of the nonzero locations of \(i \) match with nonzero elements of \(j \). Let’s have \(Y_t \) be an indicator random variable for column \(j \) having a nonzero element in the \(t \)th nonzero row of \(i \) (note: this is not the \(t \)th row of all the elements). Then \(Q_{ij} = \sum_{t=1}^s Y_t \). If we had independence across the entries, this would just be a Chernoff bound. But we don’t, so it isn’t.

However, the moments are dominated by the independent case.

\[\mathbb{E}[\sum_i Y_i]^p = \sum_{s=1}^{\min(p,s)} \sum_{d_1, d_2, \ldots, d_t} \sum_{d_j=p}^{i_1 < i_2 < \ldots < i_t} \mathbb{E}[\prod_{q=1}^s Y_{i_q}] \]

Remember that the expected value of any \(Y_t \) is \(s/n \). The product at the end is just \((s/n)^t \) in the
independent case. In our case, it’s a conditional product:

$$\mathbb{E} \left[\prod_{q=1}^{t} Y_q \right] = \mathbb{P}(Y_{i_1} = 1) \cdot \mathbb{P}(Y_{i_2} = 1 | Y_{i_1} = 1) \cdots$$

$$= \frac{s}{m} \cdot \frac{s-1}{m-1} \cdots \frac{s-l+1}{m-l+1}$$

$$\leq \left(\frac{s}{m} \right)^l$$

So the sum is actually dominated by the independent case, which can be handled via Bernstein’s inequality.

Note the runtime to apply the sparse JL map is $O(s \times \text{supp}(x))$

3 Fast JL Transform (FJLT)

Now we’ll use a different approach that’ll give $O(n \lg n)$ time, which is better in cases where x is dense. This is due to Ailon & Chazelle ’09 [AC09]. It is called, as the section title suggests, the FJLT.

Here’s their definition of Π:

$$\Pi = \frac{1}{\sqrt{m}} \cdot PHD$$

where P is an $m \times n$ sampling matrix (note that differs slightly from the paper to make the analysis easier). H is \sqrt{n} times an orthogonal $n \times n$ matrix, i.e. $H^T H = n \cdot I$. Also max $|H_{ij}| = O(1)$, and computing Hx should be fast for any x. D is an $n \times n$ diagonal matrix with random signs $\alpha_1, \ldots, \alpha_n$ along the diagonal.

Today we’ll let $P = S_\eta$ be an $n \times n$ diagonal matrix where the ith diagonal entry η_i equals 1 with probability m/n and 0 otherwise, and the η_i are independent across i. Note that an example of H could be the unnormalized discrete Fourier transform. Another possibility for H is the unnormalized Hadamard matrix where $H_{i,j} = (-1)^{\langle i, j \rangle}$. Here n is a power of 2 and we are interpreting i, j as elements of $\mathbb{F}_{2^{\log_2 n}}$. Both of these matrices allow Hx to be computed in time $O(n \log n)$. In general, $n \times n$ matrices F which are orthogonal with max $|F_{i,j}| = O(1/\sqrt{n})$ are called bounded orthonormal systems.

Motivation: what if we just sampled coordinates from x? That would be Px; let $y = (1/\sqrt{m})Px$. Then

$$\mathbb{E} y_i^2 = \frac{\|x\|^2}{m} = \frac{1}{m} \implies \mathbb{E} \|y\|^2 = 1$$

Note that the expected value is good, but the variance is pretty bad: what if all the mass of x is at a single index? We can take intuition from the Heisenberg uncertainty principle, which says that both x and Hx cannot have their mass concentrated on few coordinates.

In [AC09] the following is shown via the Khintchine inequality:
Claim 2.
\[\forall x, \|x\|_2 = 1, \mathbb{P}_\alpha \left(\|HDx\|_\infty > c \cdot \sqrt{\frac{\log(n/\delta)}{n}} \right) < \delta/2 \]

If we condition on \(\alpha \) so that the event of the above claim holds, then Bernstein implies that for
\[m \geq \frac{\log(1/\delta) \log(n/\delta)}{\epsilon^2}, \]
we will have \(\| (1/\sqrt{m}) PHDx \|_2^2 = (1 \pm \epsilon)\|x\|_2^2 \) with probability \(1 - \delta/2 \). Thus by a union bound, the overall failure probability is \(\delta \).

If we actually want to have \(O(\epsilon^{-2} \log(1/\delta)) \) rows, one way to achieve this is to set use the matrix \(\Pi' \cdot (1/\sqrt{m}) PHD \), where \(\Pi' \) is for example a dense random sign matrix with \(m' = O(\epsilon^{-2} \log(1/\delta)) \) rows.

The total time to apply \(\Pi' \cdot \Pi \) is then \(O(n \log n + m' \cdot m) \).

A slightly different analysis can improve the \(\log(n/\delta) \) dependence in \(m \) to actually be \(\log(m/\delta) \) as follows.

Theorem 3. Let \(x \in \mathbb{R}^n \) be an arbitrary unit norm vector, and suppose \(0 < \epsilon, \delta < 1/2 \). Also let \(\Pi = S_HD \) as described above with a number of rows equal to \(m \gtrsim \epsilon^{-2} \log(1/\delta) \). Then
\[\mathbb{P}_{\Pi}(\|\Pi x\|_2^2 - 1 > \epsilon) < \delta. \]

Proof. We use the moment method. Let \(\eta' \) be an independent copy of \(\eta \), and let \(\sigma \in \{-1, 1\}^n \) be uniformly random. Write \(z = HDx \) so that \(\|\Pi x\|_2^2 = \sum_i \eta_i z_i^2 \). Then
\[\| \frac{1}{m} \sum_{i=1}^n \eta_i z_i^2 - 1 \|_p = \| \frac{1}{m} \sum_{i=1}^n \eta_i z_i^2 - 1 \|_{L^p(\eta)} \|_{L^p(\sigma)} \]
\[= \| \frac{1}{m} \sum_{i=1}^n \eta_i z_i^2 - \frac{1}{m} \mathbb{E}_{\eta'} \sum_{i=1}^n \eta_i' z_i^2 \|_{L^p(\eta)} \|_{L^p(\sigma)} \]
\[\leq \| \frac{1}{m} \sum_{i=1}^n z_i^2(\eta_i - \eta_i') \|_{L^p(\eta, \eta')} \|_{L^p(\sigma)} \text{ (Jensen)} \]
\[= \| \frac{1}{m} \sum_{i=1}^n \sigma_i z_i^2(\eta_i - \eta_i') \|_{L^p(\eta, \eta')} \|_{L^p(\sigma)} \text{ (equal in distribution)} \]
\[\leq \frac{2}{m} \cdot \| \sum_{i=1}^n \sigma_i \eta_i z_i^2 \|_{L^p(\eta)} \|_{L^p(\sigma)} \text{ (triangle inequality)} \]
\[\leq \frac{2}{m} \cdot \| \sum_{i=1}^n \sigma_i \eta_i z_i^2 \|_p \]
\[\lesssim \sqrt{p} \cdot \| (\sum_{i=1}^n \eta_i z_i^2)^{1/2} \|_p \text{ (Khinchine)} \]
\[\leq \sqrt{p} \cdot \| \max_i \eta_i |z_i| : (\sum_i \eta_i z_i^2)^{1/2} \|_p \]
\[\leq \sqrt{p} \cdot \| \max_i \eta_i z_i^2 \|_p^{1/2} : \| \sum_i \eta_i z_i^2 \|_p^{1/2} \text{ (Cauchy-Schwarz)} \]
\[
\leq \sqrt{\frac{p}{m}} \cdot \| \max_i \eta_i z_i^2 \|_{p/2}^{1/2} \cdot (\| \frac{1}{m} \sum_i \eta_i z_i^2 - 1 \|_{p/2}^{1/2} + 1) \tag{triangle inequality} \quad (2)
\]

We will now bound \(\| \max_i \eta_i z_i^2 \|_{p/2} \). Define \(q = \max \{ p, \log m \} \) and note \(\| \cdot \|_p \leq \| \cdot \|_q \). Then

\[
\| \max_i \eta_i z_i^2 \|_q = \left(\mathbb{E} \max_{\alpha, \eta} \eta_i z_i^{2q} \right)^{1/q} \leq \left(\mathbb{E} \sum_i \eta_i z_i^{2q} \right)^{1/q} = \left(\sum_i \mathbb{E} \eta_i z_i^{2q} \right)^{1/q} \leq \left(n \cdot \max_i \mathbb{E} \eta_i z_i^{2q} \right)^{1/q} = \left(n \cdot \max_i (\mathbb{E} \eta_i) \cdot (\mathbb{E} \eta_i z_i^{2q}) \right)^{1/q} \quad (\alpha, \eta \text{ independent})
\]

\[
= \left(m \cdot \max_i \mathbb{E} z_i^{2q} \right)^{1/q} \leq 2 \cdot \max_i \| z_i \|_q \quad (m^{1/q} \leq 2 \text{ by choice of } q)
\]

\[
= 2 \cdot \max_i \| z_i \|_{2q} \lesssim q \quad \text{(Khintchine)} \tag{3}
\]

Eq. (3) uses that \(H \) is an unnormalized bounded orthonormal system.

Defining \(E = \| \frac{1}{m} \sum_i \eta_i z_i^2 - 1 \|_{p/2}^{1/2} \) and combining (1), (2), (3), we find that for some constant \(C > 0 \)

\[
E^2 - C \sqrt{\frac{pq}{m}} E - C \sqrt{\frac{pq}{m}} \leq 0,
\]

implying \(E^2 \lesssim \max \{ \sqrt{pq/m}, pq/m \} \). By the Markov inequality

\[
\mathbb{P}(\| \Pi x \|_2^2 - 1 > \varepsilon) \leq \varepsilon^{-p} \cdot E^{2p},
\]

and thus to achieve the theorem statement it suffices to set \(p = \log(1/\delta) \) then choose \(m \gtrsim \varepsilon^{-2 \log(1/\delta) \log(1/\delta)} \).

Remark 4. Note that the FJLT as analyzed above provides suboptimal \(m \). If one desired optimal \(m \), one can instead use the embedding matrix \(\Pi' \Pi \), where \(\Pi \) is the FJLT and \(\Pi' \) is, say, a dense matrix with Rademacher entries having the optimal \(m' = O(\varepsilon^{-2 \log(1/\delta)}) \) rows. The downside is that the runtime to apply our embedding worsens by an additive \(m \cdot m' \). [AC09] slightly improved this additive term (by an \(\varepsilon^2 \) multiplicative factor) by replacing the matrix \(S \) with a random sparse matrix \(P \).

Remark 5. The usual analysis for the FJLT, such as the approach in [AC09], would achieve a bound on \(m \) of \(O(\varepsilon^{-2 \log(1/\delta) \log(n/\delta)}) \). Such analyses operate by, using the notation of the proof...
of Theorem 3, first conditioning on \(\|z\|_\infty \lesssim \sqrt{\log(n/\delta)} \) (which happens with probability at least \(1 - \delta/2 \) by the Khintchine inequality), then finishing the proof using Bernstein’s inequality. In our proof above, we improved this dependence on \(n \) to a dependence on the smaller quantity \(m \) by avoiding any such conditioning.

3.1 Application: High-dimensional approximate nearest neighbors search (ANN)

Let’s assume that we’re working with \(L_2 \) distances in \(\mathbb{R}^d \). Let’s define the exact nearest neighbors problem as follows: we’re given \(n \) points \(P = \{p_1, p_2 \ldots p_n\} \), \(p_i \in \mathbb{R}^d \). We need to create a data structure such that a query on point \(q \in \mathbb{R}^d \) returns a point \(p \in P \) such that the distance \(\|p - q\|_2 \) is minimized. An example application might be image retrieval (similar images). In the approximate case, we want to return a point \(p \) such that \(\|p - q\|_2 \leq c \cdot \min_{p' \in P} \|p' - q\|_2 \). Note that the simple solution is to store all the points in a list and just check them all on query, but that requires \(nd \) time to calculate.

3.1.1 Voronoi diagrams

One way to solve this problem is to construct the Voronoi diagram for the points in the space, which is the division of the space into areas \(A_i \) such that all points \(x \in A_i \) are closest to \(p_i \). Then on a query we do planar point location to find the correct Voronoi cell for a point. However, when \(d \neq 2 \), the curse of dimensionality strikes. In \(d \) dimensions, the Voronoi diagram requires \(n^{\Theta(d)} \) space to store. Note that this is a lower bound!

3.1.2 Approximate Nearest Neighbor (ANN)

This reduces to the problem \(c \)-NN ([HPI12]).

\((c, r)\)-NN: If there exists \(p \in P \) such that \(\|p - q\| \leq r \), then return \(p' \in P \) such that \(\|p' - q\| \leq cr \). If there doesn’t exist such a \(p \), then FAIL.

The easiest reduction is just binary search on \(r \), but the above reference avoids some problems.

<table>
<thead>
<tr>
<th>Space</th>
<th>Time</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dn + n^{O(1/c^2)})</td>
<td>((d + \frac{\log n}{c})O(1))</td>
<td>[KOR98][IM98]</td>
</tr>
<tr>
<td>(dn + n^{1+\rho(c)})</td>
<td>(n^{\rho(c)})</td>
<td></td>
</tr>
<tr>
<td>(\rho(c) =)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1/c)</td>
<td></td>
<td>[GIM+99]</td>
</tr>
<tr>
<td>(\frac{1}{c^2} + o(1))</td>
<td></td>
<td>[AI06]</td>
</tr>
<tr>
<td>((7/8)c^2 + o(1/c^2))</td>
<td></td>
<td>[AINR14]</td>
</tr>
<tr>
<td>((2c^2-1)^{1/2} + o(1))</td>
<td></td>
<td>[AR15]</td>
</tr>
<tr>
<td>(O(dn))</td>
<td>(\frac{2^{16}}{c})</td>
<td>[MNP07]</td>
</tr>
</tbody>
</table>

Today we just show the following result:

1. ANN with \(n^{O(\log(1/c)/c^2)} \) space.

6
2. First, $dn + n \cdot O(c/\epsilon^d)$ space

3. Pretend $r = 1$. Impose uniform ϵ/\sqrt{d} grid on \mathbb{R}^d

4. for each $p_i \in P$, let $B_i = B_{l_2}(p_i, 1)$

5. let $B_i' = \text{set of the grid cells that } B_i \text{ intersects}$

6. Store $B' = \cup B_i'$ in a hash table (key = grid cell ID, value = i).

7. # of grid cell intersected $\leq Vol(B_{l_2}(1+\epsilon)/Vol(\text{grid cell}))$

8. The volume of the ball is $R_d 2^{O(d)}/d^{d/2}$

9. so we have # of grid cell intersected $\leq (c/\epsilon)^d$

Now note d can be reduced to $O(\epsilon^{-2} \log n)$ using the JL lemma, giving the desired space bound.

References

