1 Probability Recap

Chebyshev: \(P(|X - \mathbb{E}X| > \lambda) < \frac{\text{Var}[X]}{\lambda^2} \)

Chernoff: For \(X_1, \ldots, X_n \) independent in \([0, 1]\), \(\forall 0 < \epsilon < 1 \), and \(\mu = \mathbb{E} \sum_i X_i \),

\[
P(\left| \sum_i X_i - \mu \right| > \epsilon \mu) < 2e^{-\epsilon^2 \mu/3}
\]

2 Today

- Distinct elements
- Norm estimation (if there’s time)

3 Distinct elements \((F_0)\)

Problem: Given a stream of integers \(i_1, \ldots, i_m \in [n] \) where \([n] := \{1, 2, \ldots, n\}\), we want to output the number of distinct elements seen.

3.1 Straightforward algorithms

1. Keep a bit array of length \(n \). Flip bit if a number is seen.
2. Store the whole stream. Takes \(m \lg n \) bits.

We can solve with \(O(\min(n, m \lg n)) \) bits.

3.2 Randomized approximation

We can settle for outputting \(\tilde{t} \) s.t. \(P(|t - \tilde{t}| > \epsilon t) < \delta \). The original solution was by Flajolet and Martin [2].
3.3 Idealized algorithm

1. Pick random function \(h : [n] \rightarrow [0, 1] \) (idealized, since we can’t actually nicely store this)

2. Maintain counter \(X = \min_{i \in \text{stream}} h(i) \)

3. Output \(1/X - 1 \)

Intuition. \(X \) is a random variable that’s the minimum of \(t \) i.i.d \(Unif(0, 1) \) r.v.s.

Claim 1. \(E X = \frac{1}{t+1} \).

Proof.

\[
E X = \int_0^\infty P(X > \lambda) d\lambda \\
= \int_0^\infty P(\forall i \in \text{str}, h(i) > \lambda) d\lambda \\
= \int_0^\infty \prod_{r=1}^{t} P(h(i_r) > \lambda) d\lambda \\
= \int_0^1 (1 - \lambda)^t d\lambda \\
= \frac{1}{t+1}
\]

Claim 2. \(E X^2 = \frac{2}{(t+1)(t+2)} \)

Proof.

\[
E X^2 = \int_0^1 P(X^2 > \lambda) d\lambda \\
= \int_0^1 P(X > \sqrt{\lambda}) d\lambda \\
= \int_0^1 (1 - \sqrt{\lambda})^t d\lambda \\
= 2 \int_0^1 u^t(1-u) du \\
= \frac{2}{(t+1)(t+2)}
\]

This gives \(Var[X] = E X^2 - (E X)^2 = \frac{t}{(t+1)^2(t+2)} \), and furthermore \(Var[X] < \frac{1}{(t+1)^2} = (E X)^2 \).
4 FM+

We average together multiple estimates from the idealized algorithm FM.

1. Instantiate \(q = \frac{1}{\epsilon^2} \) FMs independently
2. Let \(X_i \) come from FM\(_i\).
3. Output \(\frac{1}{Z} - 1 \), where \(Z = \frac{1}{q} \sum_i X_i \).

We have that \(\mathbb{E}(Z) = \frac{1}{t+1} \), and \(\text{Var}(Z) = \frac{1}{q(t+1)^2(t+2)} < \frac{1}{q(t+1)^2} \).

Claim 3. \(P(\frac{1}{Z} - 1 > \frac{\epsilon}{t+1}) < \eta \)

Proof. Chebyshev.

\[
P(\left| Z - \frac{1}{t+1} \right| > \frac{\epsilon}{t+1}) < \frac{(t+1)^2}{\epsilon^2} \frac{1}{q(t+1)^2} = \eta
\]

Claim 4. \(P(\left| \frac{1}{Z} - 1 - t \right| > O(\epsilon) t) < \eta \)

Proof. By the previous claim, with probability \(1 - \eta \) we have

\[
\frac{1}{(1 \pm \epsilon)\frac{1}{t+1}} - 1 = (1 \pm O(\epsilon))(t+1) - 1 = (1 \pm O(\epsilon))t \pm O(\epsilon)
\]

5 FM++

We take the median of multiple estimates from FM++.

1. Instantiate \(s = \lceil 36 \ln(2/\delta) \rceil \) independent copies of FM++ with \(\eta = 1/3 \).
2. Output the median \(\hat{t} \) of \(\{1/Z_j - 1\} \)\(_{j=1}^s\) where \(Z_j \) is from the \(j \)th copy of FM++.

Claim 5. \(P(\left| \hat{t} - t \right| > \epsilon t) < \delta \)

Proof. Let

\[
Y_j = \begin{cases}
1 & \text{if } \left| \frac{1}{Z_j} - 1 - t \right| > \epsilon t \\
0 & \text{else}
\end{cases}
\]

We have \(\mathbb{E}Y_j = P(Y_j = 1) < 1/3 \) from the choice of \(\eta \). The probability we seek to bound is equivalent to the probability that the median fails, i.e. at least half of the FM++ estimates have \(Y_j = 1 \). In other words,

\[
\sum_{j=1}^s Y_j > s/2
\]
We then get that
\[P(\sum Y_j > s/2) = P(\sum Y_j - s/3 > s/6) \quad (1) \]

Make the simplifying assumption that \(\mathbb{E}Y_j = 1/3 \) (this turns out to be stronger than \(\mathbb{E}Y_j < 1/3 \). Then equation 1 becomes
\[P(\sum Y_j - \mathbb{E} \sum Y_j > \frac{1}{2} \mathbb{E} \sum Y_j) \]
using Chernoff,
\[< e^{-\left(\frac{1}{2}\right)^2 s/3} < \delta \]
as desired.

The final space required, ignoring \(h \), is \(O\left(\frac{\log(1/\delta)}{\epsilon^2}\right) \) for \(O(\log(1/\delta)) \) copies of FM+ that require \(O(1/\epsilon^2) \) space each.

6 \textit{k-wise independent functions}

\textbf{Definition 6.} A family \(\mathcal{H} \) of functions mapping \([a]\) to \([b]\) is \(k \)-wise independent if \(\forall j_1, \ldots, j_k \in [b] \) and \(\forall \) distinct \(i_1, \ldots, i_k \in [a] \),
\[P_{h \in \mathcal{H}}(h(i_1) = j_1 \land \ldots \land h(i_k) = j_k) = \frac{1}{b^k} \]

\textbf{Example.} The set \(\mathcal{H} \) of all functions \([a] \to [b]\) is \(k \)-wise independent for every \(k \). \(|\mathcal{H}| = b^a \) so \(h \) is representable in \(a \log b \) bits.

\textbf{Example.} Let \(a = b = q \) for \(q = p^r \) a prime power, then \(\mathcal{H}_{poly} \), the set of degree \(\leq k - 1 \) polynomials with coefficients in \(\mathbb{F}_q \), the finite field of order \(q \). \(|\mathcal{H}_{poly}| = q^k \) so \(h \) is representable in \(k \log p \) bits.

\textbf{Claim 7.} \(\mathcal{H}_{poly} \) is \(k \)-wise independent.

\textit{Proof.} Interpolation.

7 \textit{Non-idealized FM}

First, we get an \(O(1) \)-approximation in \(O(\log n) \) bits, i.e. our estimate \(\tilde{t} \) satisfies \(t/C \leq \tilde{t} \leq Ct \) for some constant \(C \).

1. Pick \(h \) from 2-wise family \([n] \to [n]\), for \(n \) a power of 2 (round up if necessary)
2. Maintain \(X = \max_{i \in str} lsb(h(i)) \) where \(lsb \) is the least significant bit of a number
3. Output \(2^X \)
For fixed j, let Z_j be the number of i in stream with $\text{lsb}(h(i)) = j$. Let $Z_{> j}$ be the number of i with $\text{lsb}(h(i)) > j$.

Let

$$Y_i = \begin{cases} 1 & \text{lsb}(h(i)) = j \\ 0 & \text{else} \end{cases}$$

Then $Z_j = \sum_{i \in \text{str}} Y_i$. We can compute $E[Z_j] = t/2^{j+1}$ and similarly

$$E[Z_{> j}] = t(\frac{1}{2^{j+2}} + \frac{1}{2^{j+3}} + \ldots) < t/2^{j+1}$$

and also

$$\text{Var}[Z_j] = \text{Var}\left[\sum_{i} Y_i \right] = E\left(\sum_{i} Y_i^2\right) - (E\sum_{i} Y_i)^2 = \sum_{i_1, i_2} E(Y_{i_1} Y_{i_2})$$

Since h is from a 2-wise family, Y_i are pairwise independent, so $E(Y_{i_1} Y_{i_2}) = E(Y_{i_1})E(Y_{i_2})$. We can then show

$$\text{Var}[Z_j] < t/2^{j+1}$$

Now for $j^* = \lfloor \lg t - 5 \rfloor$, we have

$$16 \leq E[Z_{j^*}] \leq 32$$

$$P(Z_{j^*} = 0) \leq P(|Z_{j^*} - E[Z_{j^*}]| \geq 16) < 1/5$$

by Chebyshev.

For $j = \lfloor \lg t + 5 \rfloor$

$$E[Z_{> j}] \leq 1/16$$

$$P(Z_{> j} \geq 1) < 1/16$$

by Markov.

This means with good probability the max lsb will be above j^* but below j, in a constant range. This gives us a 32-approximation, i.e. constant approximation.

8 Refine to $1 + \epsilon$

Trivial solution. Algorithm TS stores first C/ϵ^2 distinct elements. This is correct if $t \leq C/\epsilon^2$.

Algorithm.

1. Instantiate $\text{TS}_0, \ldots, \text{TS}_{\lg n}$
2. Pick $g : [n] \rightarrow [n]$ from 2-wise family
3. Feed i to $\text{TS}_{\text{lsb}(g(i))}$
4. Output 2^{j+1} out where $t/2^{j+1} \approx 1/\epsilon^2$.

Let B_j be the number of distinct elements hashed by g to TS_j. Then $\mathbb{E}B_j = t/2^{j+1} = Q_j$. By Chebyshev $B_j = Q_j \pm O(\sqrt{Q_j})$ with good probability. This equals $(1 \pm O(\epsilon))Q_j$ if $Q_j \geq 1/\epsilon^2$.

Final space: $\frac{C}{\epsilon^2} (\log n)^2 = O\left(\frac{1}{\epsilon^2} \log^2 n\right)$ bits.

It is known that space $O(1/\epsilon^2 + \log n)$ is achievable [4], and furthermore this is optimal [1, 5] (also see [3]).

References

