1 Gordon’s theorem

Let T be a finite subset of some normed vector space with norm $\|\cdot\|_X$. We say that a sequence $T_0 \subseteq T_1 \subseteq \ldots \subseteq T$ is admissible if $|T_0| = 1$ and $|T_r| \leq 2^r$ for all $r \geq 1$, and $T_r = T$ for all $r \geq r_0$ for some r_0. We define the γ_2-functional

$$\gamma_2(T, \|\cdot\|_X) = \inf \sup_{x \in T} \sum_{r=1}^{\infty} 2^{r/2} \cdot d_X(x, T_r),$$

where the inf is taken over all admissible sequences. We also let $d_X(T)$ denote the diameter of T with respect to norm $\|\cdot\|_X$. For the remainder of this section we make the definitions $\pi_r x = \arg\min_{y \in T_r} \|y - x\|_X$ and $\Delta_r x = \pi_r x - \pi_{r-1} x$.

Throughout this section we let $\|\cdot\|$ denote the ℓ_2 operator norm in the case of matrix arguments, and the ℓ_2 norm in the case of vector arguments.

Krahmer, Mendelson, and Rauhut showed the following theorem [KMR14].

Theorem 1. Let $A \subset \mathbb{R}^{m \times n}$ be arbitrary. Let $\varepsilon_1, \ldots, \varepsilon_n$ be independent ± 1 random variables. Then

$$\mathbb{E} \sup_{A \in \mathcal{A}} \left| \|A\varepsilon\|^2 - \mathbb{E} \|A\varepsilon\|^2 \right| \lesssim \gamma_2^2(\mathcal{A}, \|\cdot\|) + \gamma_2(\mathcal{A}, \|\cdot\|) \cdot d_F(\mathcal{A}) + d_F(\mathcal{A}) \cdot d_{\ell_2/2}(\mathcal{A}).$$

The KMR theorem was actually more general, where the Rademacher variables could be replaced by subgaussian random variables. We present just the proof of the Rademacher case.
Proof. Without loss of generality we can assume \(\mathcal{A} \) is finite (else apply the theorem to a sufficiently fine net, i.e. fine in \(\ell_2 \rightarrow \ell_2 \) operator norm). Define
\[
E = \mathbb{E} \sup_{\varepsilon \in \mathcal{A}} \left| \| A\varepsilon \|^2 - \mathbb{E} \| A\varepsilon \|^2 \right|
\]
and let \(A^i \) denote the \(i \)th column of \(A \). Then by decoupling
\[
\mathbb{E} \sup_{\varepsilon, \varepsilon' \in \mathcal{A}} \left| \sum_{i \neq j} \varepsilon_i \varepsilon_j' \langle A^i, A^j \rangle \right| \leq 4 \cdot \mathbb{E} \sup_{\varepsilon, \varepsilon' \in \mathcal{A}} \left| \langle A\varepsilon, A\varepsilon' \rangle \right|.
\]
Let \(\{T_r\}_{r=0}^\infty \) be admissible for \(\mathcal{A} \). Direct computation shows
\[
\langle A\varepsilon, A\varepsilon' \rangle = \langle (\pi_0 A)\varepsilon, (\pi_0 A)\varepsilon' \rangle + \sum_{r=1}^{\infty} \langle (\Delta_r A)\varepsilon, (\pi_{r-1} A)\varepsilon' \rangle + \sum_{r=1}^{\infty} \langle (\pi_r A)\varepsilon, (\Delta_r A)\varepsilon' \rangle.
\]
We have \(T_0 = \{A_0\} \) for some \(A_0 \in \mathcal{A} \). Thus \(\mathbb{E}_{\varepsilon, \varepsilon'} |\langle (\pi_0 A)\varepsilon, (\pi_0 A)\varepsilon' \rangle| \) equals
\[
\mathbb{E}_{\varepsilon, \varepsilon'} |\varepsilon^* A_0^* A_0 \varepsilon'| \leq \left(\mathbb{E}_{\varepsilon, \varepsilon'} |\varepsilon^* A_0^* A_0 \varepsilon'|^2 \right)^{1/2} = \| A_0^* A_0 \|_F \leq \| A_0 \| \cdot \| A_0 \| \leq d_F(\mathcal{A}) \cdot d_{\ell_2 \rightarrow 2}(\mathcal{A}).
\]
Thus,
\[
\mathbb{E} \sup_{\varepsilon, \varepsilon' \in \mathcal{A}} |\langle A\varepsilon, A\varepsilon' \rangle| \leq d_F(\mathcal{A}) \cdot d_{\ell_2 \rightarrow 2}(\mathcal{A}) + \mathbb{E} \sup_{\varepsilon, \varepsilon' \in \mathcal{A}} \sum_{r=1}^{\infty} |X_r(A)| + \mathbb{E} \sup_{\varepsilon, \varepsilon' \in \mathcal{A}} \sum_{r=1}^{\infty} |Y_r(A)|.
\]
We focus on the second summand; handling the third summand is similar.
Note \(X_r(A) = \langle (\Delta_r A)\varepsilon, (\pi_{r-1} A)\varepsilon' \rangle = \langle \varepsilon, (\Delta_r A)^* (\pi_{r-1} A)\varepsilon' \rangle \). Thus
\[
\mathbb{P}(|X_r(A)| > t^{2r/2} \cdot \| (\Delta_r A)^* (\pi_{r-1} A)\varepsilon' \|) \lesssim e^{-t^{2r/2}} \text{ (Khintchine)}.
\]
Let \(\mathcal{E}(A) \) be the event that for all \(r \geq 1 \) simultaneously, \(|X_r(A)| \leq t^{2r/2} \cdot \| \Delta_r A \| \cdot \sup_{\varepsilon \in \mathcal{A}} \| A\varepsilon \| \). Then
\[
\mathbb{P}(\exists A \in \mathcal{A} \text{ s.t. } \neg \mathcal{E}(A)) \lesssim \sum_{r=1}^{\infty} |T_r| \cdot |T_{r-1}| \cdot e^{-t^{2r/2}}
\]
\[\leq \sum_{r=1}^{\infty} 2^{r+1} \cdot e^{-t^2 2^r/2}. \]

Therefore

\[\mathbb{E} \sup_{\varepsilon, \varepsilon' : A \in A} \sum_{r=1}^{\infty} |X_r(A)| = \mathbb{E} \int_0^{\infty} \mathbb{P} \left(\sup_{A \in A} \sum_{r=1}^{\infty} |X_r(A)| > t \right) dt, \]

which by a change of variables is equal to

\[\mathbb{E} \left(\sup_{A \in A} \| A' \| \cdot \left(\sup_{A \in A} \sum_{r=1}^{\infty} 2^{r/2} \| \Delta_r A \| \right) \right. \]
\[\times \left. \cdot \int_0^{\infty} \mathbb{P} \left(\sup_{A \in A} \sum_{r=1}^{\infty} |X_r(A)| > t \sup_{A \in A} 2^{r/2} \cdot \| \Delta_r A \| \cdot \sup_{A \in A} \| A' \| \right) dt \right) \]
\[\leq \left(\mathbb{E} \sup_{\varepsilon' : A \in A} \| A' \| \right) \cdot \left(\sup_{A \in A} \sum_{r=1}^{\infty} 2^{r/2} \| \Delta_r A \| \right) \cdot \left[3 + \sum_{r=1}^{\infty} \int_0^{\infty} 2^{r+1} e^{-t^2 2^r/2} dt \right] \]
\[\leq \left(\mathbb{E} \sup_{\varepsilon' : A \in A} \| A' \| \right) \cdot \sup_{A \in A} \sum_{r=1}^{\infty} 2^{r/2} \cdot d_{2 \to 2}(A, T_r), \]

since \(\| \Delta_r A \| \leq d_{2 \to 2}(A, T_{r-1}) + d_{2 \to 2}(A, T_r) \) via the triangle inequality. Choosing admissible \(T_0 \subseteq T_1 \subseteq \ldots \subseteq T \) to minimize the above expression,

\[E \lesssim d_F(A) \cdot d_{2 \to 2}(A) + \gamma_2(A, \| \cdot \|) \cdot \mathbb{E} \sup_{\varepsilon' : A \in A} \| A' \|. \]

Now observe

\[\mathbb{E} \left(\sup_{A \in A} \| A' \| \right) \leq \left(\mathbb{E} \sup_{\varepsilon' : A \in A} \| A' \|^2 \right)^{1/2} \]
\[\leq \left(\mathbb{E} \left(\left\| A_{\varepsilon'} \right\|^2 - \mathbb{E} \| A_{\varepsilon'} \|^2 \right) + \mathbb{E} \| A_{\varepsilon'} \|^2 \right)^{1/2} \]
\[= \left(\mathbb{E} \sup_{A \in A} \left(\left\| A_{\varepsilon'} \right\|^2 - \mathbb{E} \| A_{\varepsilon'} \|^2 \right) + \| A \|^2_F \right)^{1/2} \]
Thus in summary,\[E \lesssim d_F(A) \cdot d_{\ell_2 \to \ell_2}(A) + \gamma_2(A, \| \cdot \|) \cdot (\sqrt{E} + d_F(A)). \]

This implies E is at most the square of the larger root of the associated quadratic equation, which gives the theorem. \[\square \]

Using the KMR theorem, we can recover Gordon’s theorem [Gor88] (also see [KM05, MPTJ07, Dir14]). We again only discuss the Rademacher case. Note that in metric JL, we wish for the set of vectors X that \[\forall x, y \in X, \quad \| \Pi(x - y) \|_2^2 - \| x - y \|_2^2 < \varepsilon \| x - y \|_2^2. \]

If we define \[T = \left\{ \frac{x - y}{\| x - y \|_2} : x, y \in X \right\}, \]

then it is equivalent to have \[\sup_{x \in T} \| \Pi x \|_2^2 - 1 < \varepsilon. \]

Since Π is random, we will demand that this holds in expectation \[\mathbb{E} \sup_{x \in T} \| \Pi x \|_2^2 - 1 < \varepsilon. \tag{1} \]

Theorem 2. Let $T \subset \mathbb{R}^n$ be a set of vectors each of unit norm, and let $\varepsilon \in (0, 1/2)$ be arbitrary. Let $\Pi \in \mathbb{R}^{m \times n}$ be such that $\Pi_{i,j} = \sigma_{i,j}/\sqrt{m}$ for independent Rademacher $\sigma_{i,j}$, and where $m = \Omega((\gamma_2^2(T, \| \cdot \|) + 1)/\varepsilon^2)$. Then \[\mathbb{E} \sup_{x \in T} \| \Pi x \|^2 - 1 < \varepsilon. \]

Proof. For $x \in T$ let A_x denote the $m \times mn$ matrix defined as follows: \[A_x = \frac{1}{\sqrt{m}} \cdot \begin{bmatrix} x_1 & \cdots & x_n & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & x_1 & \cdots & x_n & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & x_1 & \cdots & x_n \end{bmatrix}. \]
Then \(\|\Pi x\|^2 = \|A_x\sigma\|^2 \), so letting \(A = \{A_x : x \in T\} \),
\[
\mathbb{E} \sup_{x \in T} \|\Pi x\|^2 - 1 = \mathbb{E} \sup_{A \in A} \|A\sigma\|^2 - \mathbb{E} \|A\sigma\|^2.
\]

We have \(d_F(A) = 1 \). Also \(A^* A_x \) is a block-diagonal matrix, with \(m \) blocks each equal to \(xx^*/m \), and thus the singular values of \(A_x \) are 0 and \(\|x\|/\sqrt{m} \), implying \(d_{t_{2,2}}(A) = 1/\sqrt{m} \). Similarly, since \(A_x - A_y = A_{x-y} \), for any vectors \(x, y \) we have \(\|A_x - A_y\| = \|x - y\| \), and thus \(\gamma_2(A, \| \cdot \|) = \gamma_2(T, \| \cdot \|) \sqrt{m} \). Thus by the KMR theorem we have
\[
\mathbb{E} \sup_{x \in T} \|\Pi x\|^2 - 1 \lesssim \frac{\gamma_2^2(T, \| \cdot \|)}{m} + \frac{\gamma_2(T, \| \cdot \|)}{\sqrt{m}} + \frac{1}{\sqrt{m}},
\]
which is at most \(\varepsilon \) for \(m \) as in the theorem statement.

Gordon’s theorem was actually stated differently in [Gor88] in two ways: (1) Gordon actually only analyzed the case of \(\Pi \) having i.i.d. gaussian entries, and (2) the \(\gamma_2(T, \| \cdot \|) \) terms in the theorem statement were written as the gaussian mean width \(g(T) = \mathbb{E}_g \sup_{x \in T} \langle g, x \rangle \), where \(g \in \mathbb{R}^n \) is a vector of i.i.d. standard normal random variables. For (1), the extension to arbitrary subgaussian random variables was shown first in [KM05]. Note the KMR theorem only bounds an expectation; thus if one wants to argue that the random variable in question is large with probability at most \(\delta \), the most obvious way is Markov, which would introduce JL a poor \(1/\delta^2 \) dependence in \(m \). One could remedy this by doing Markov on the \(p \)th moment; the tightest known \(p \)-norm bound is given in [Dir13, Theorem 6.5] (see also [Dir14, Theorem 4.8]).

For (2), Gordon actually wrote his paper before \(\gamma_2 \) was even defined! The definition of \(\gamma_2 \) given here is due to Talagrand, who also showed that for all sets of vectors \(T \subset \mathbb{R}^n \), \(g(T) \simeq \gamma_2(T, \| \cdot \|) \) [Tal14] (this is known as the “Majorizing Measures” theorem). In fact the upper bound \(g(T) \lesssim \gamma_2(T, \| \cdot \|) \) was shown by Fernique [Fer75] (although \(\gamma_2 \) was not defined at that point; Talagrand later recast this upper bound in terms of his newly defined \(\gamma_2 \)-functional).

We thus state the following corollary of the majorizing measures theorem and Theorem 2.

Corollary 1. Let \(T \subset \mathbb{R}^n \) be a set of vectors each of unit norm, and let \(\varepsilon \in (0,1/2) \) be arbitrary. Let \(\Pi \in \mathbb{R}^{m \times n} \) be such that \(\Pi_{i,j} = \sigma_{i,j}/\sqrt{m} \) for
independent Rademacher \(\sigma_{i,j} \), and where \(m = \Omega((g^2(T) + 1)/\varepsilon^2) \). Then

\[
\mathbb{E} \sup_{x \in T} |\|\Pi x\|^2 - 1| < \varepsilon.
\]

1.1 Application 1: numerical linear algebra

Consider, for example, the least squares regression problem. Given \(A \in \mathbb{R}^{n \times d}, b \in \mathbb{R}^n \), \(n \gg d \), the goal is to compute

\[
x^* = \arg\min_{x \in \mathbb{R}^n} \|Ax - b\|_2.
\]

(2)

It is standard that

\[
x^* = (A^T A)^{-1} A^T b
\]

when \(A \) has full column rank. Unfortunately, naively computing \(A^T A \) takes time \(\Theta(nd^2) \). We would like to speed this up.

Given our lectures on dimensionality reduction, one natural question is the following: if instead we compute

\[
\tilde{x}^* = \arg\min_{x \in \mathbb{R}^n} \|\Pi Ax - \Pi b\|_2
\]

for some JL map \(\Pi \) with few rows \(m \), can we argue that \(\tilde{x}^* \) is a good solution for (2)? The answer is yes.

Theorem 3. Suppose (1) holds for \(T \) the unit vectors in the subspace spanned by \(b \) and the columns of \(A \). Then

\[
\|A\tilde{x} - b\|^2_2 \leq \frac{1 + \varepsilon}{1 - \varepsilon} \cdot \|Ax^* - b\|^2_2
\]

Proof.

\[
(1 - \varepsilon)\|A\tilde{x}^* - b\|^2_2 \leq \|\Pi A\tilde{x}^* - \Pi b\|^2_2 \leq \|\Pi Ax^* - \Pi b\|^2_2 \leq (1 + \varepsilon)\|Ax^* - b\|^2_2.
\]

The first and third inequalities hold since \(\Pi \) preserves \(A\tilde{x}^* - b \) and \(Ax^* - b \). The second inequality holds since \(\tilde{x}^* \) is the optimal solution to the lower dimensional regression problem. \(\square \)

Now we may ask ourselves: what is the number of rows \(m \) needed to preserve the vector \(T \) in Theorem 3? We apply Corollary 1. Note \(T \) is the set
of unit vectors in a subspace of dimension \(D \leq d + 1 \). By rotational symmetry of the gaussian, we can assume this subspace equals \(\text{span}\{e_1, \ldots, e_D\} \). Then

\[
\mathbb{E} \sup_{g \in \mathbb{R}^D} \langle g, x \rangle = \mathbb{E} \|g\|_2 \leq (\mathbb{E} \|g\|_2^2)^{1/2} = \sqrt{D}.
\]

Thus it suffices for \(\Pi \) to have \(m \gtrsim d/\varepsilon^2 \) rows.

Unfortunately in the above, although solving the lower-dimensional regression problem is fast (since now \(\Pi A \) has \(O(d/\varepsilon^2) \) rows compared with the \(n \) rows of \(A \)), multiplying \(\Pi A \) using dense random \(\Pi \) is actually slower than solving the original regression problem (2). This was remedied by Sarlós in [Sar06] by using a fast JL matrix as in Lecture 2; see [CNW15, Theorem 9] for the tightest analysis of this construction in this context. An alternative is to use a sparse \(\Pi \). The first analysis of this approach was in [CW13]. The tightest known analyses are in [MM13, NN13, BDN15].

It is also the case that \(\Pi \) can be used more efficiently to solve regression problems than simply requiring (1) for \(T \) as above. See for example [CW13, Theorem 7.7] in the full version of that paper for an iterative algorithm based on such \(\Pi \) which has running time dependence on \(\varepsilon \) equal to \(O(\log(1/\varepsilon)) \), instead of the \(\text{poly}(1/\varepsilon) \) above. For further results on applying JL to problems in this domain, see the book [Woo14].

1.2 Application 2: compressed sensing

In **compressed sensing**, the goal is to (approximately) recover an (approximately) sparse signal \(x \in \mathbb{R}^n \) from a few linear measurements. We will imagine that these \(m \) linear measurements are organized as the rows of a matrix \(\Pi \in \mathbb{R}^{m \times n} \). Let \(T^k \) be the set of all \(k \)-sparse vectors in \(\mathbb{R}^n \) of unit norm (i.e. the union of \(\binom{n}{k} \) \(k \)-dimensional subspaces). One always has

\[
\gamma_2(T, \| \cdot \|) \leq \inf_{\{T_r\}} \sum_{r=1}^{\infty} 2^{r/2} \sup_{x \in T} d_{l_2}(x, T_r),
\]

i.e. the sup can be moved inside the sum to obtain an upper bound. Minimizing the right hand side amounts to finding the best nets possible for \(T \) of some bounded size \(2^k \) for each \(k \). By doing this, which we do not discuss here, one can show that for our \(T^k \), \(\gamma_2(T^k, \| \cdot \|) \lesssim \sqrt{k \log(n/k)} \) so that one can obtain (1) with \(m \approx k \log(n/k)/\varepsilon^2 \). A more direct net argument can also
yield this bound (see [BDDW08] which suffered a $\log(1/\varepsilon)$ factor, and the removal of this factor in [FR13, Theorem 9.12]).

Now, any matrix Π preserving this T^k with distortion $1 + \varepsilon$ is known as having the (k, ε)-restricted isometry property (RIP) [CT06]. We are ready to state a theorem of [CT06, Don06]. One can find a short proof in [Can08].

Theorem 4. Suppose Π satisfies the $(2k, \sqrt{2} - 1)$-RIP. Then given $y = \Pi x$, if one solves the linear program

$$\min \|z\|_1 \quad \text{s.t.} \quad \Pi z = y$$

then the optimal solution \tilde{x} will satisfy

$$\|x - \tilde{x}\|_2 = O\left(1/\sqrt{k}\right) \cdot \inf_{w \in \mathbb{R}^n \atop |\text{supp}(w)| \leq k} \|x - w\|_1.$$

References

