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Abstract

For any n > 1 and 0 < ε < 1/2, we show the existence of an nO(1)-point subset X of Rn such that any
linear map from (X, `2) to `m2 with distortion at most 1 + ε must have m = Ω(min{n, ε−2 logn}). Our
lower bound matches the upper bounds provided by the identity matrix and the Johnson-Lindenstrauss
lemma [JL84], improving the previous lower bound of Alon [Alo03] by a log(1/ε) factor.

1 Introduction

The Johnson-Lindenstrauss lemma [JL84] states the following.

Theorem 1 (JL lemma [JL84, Lemma 1]). For any N -point subset X of Euclidean space and any 0 < ε <
1/2, there exists a map f : X → `m2 with m = O(ε−2 logN) such that

∀x, y ∈ X, (1− ε)‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1 + ε)‖x− y‖22. (1)

We henceforth refer to f satisfying (1) as having the ε-JL guarantee for X (often we drop mention of ε
when understood from context). The JL lemma has found applications in computer science, signal processing
(e.g. compressed sensing), statistics, and mathematics. The main idea in algorithmic applications is that
one can transform a high-dimensional problem into a low-dimensional one such that an optimal solution to
the lower dimensional problem can be lifted to a nearly optimal solution to the original problem. Due to the
decreased dimension, the lower dimensional problem requires fewer resources (time, memory, etc.) to solve.
We refer the reader to [Ind01, Vem04, Mat08] for a list of further applications.

All known proofs of the JL lemma with target dimension as stated above in fact provide such a map f
which is linear. This linearity property is important in several applications. For example in the turnstile
model of streaming [Mut05], a vector x ∈ Rn receives a stream of coordinate-wise updates each of the form
xi ← xi+∆, where ∆ ∈ R. The goal is to process x using some m� n memory. Thus if one wants to perform
dimensionality reduction in a stream, which occurs for example in streaming linear algebra applications
[CW09], this can be achieved with linear f since f(x + ∆ · ei) = f(x) + ∆ · f(ei). In compressed sensing,
another application where linearity of f is inherent, one wishes to (approximately) recover (approximately)
sparse signals using few linear measurements [Don06, CT05]. The map f sending a signal to the vector
containing some fixed set of linear measurements of it is known to allow for good signal recovery as long as
f satisfies the JL guarantee for the set of all k-sparse vectors [CT05].

Given the widespread use of dimensionality reduction across several domains, it is a natural and often-
asked question whether the JL lemma is tight: does there exist some X of size N such that any such
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map f must have m = Ω(ε−2 logN)? The paper [JL84] introducing the JL lemma provided the first lower
bound of m = Ω(logN) when ε is smaller than some constant. This was improved by Alon [Alo03], who
showed that if X = {0, e1, . . . , en} ⊂ Rn is the simplex (thus N = n + 1) and 0 < ε < 1/2, then any
JL map f must embed into dimension m = Ω(min{n, ε−2 log n/ log(1/ε)}). Note the first term in the min
is achieved by the identity map. Furthermore, the log(1/ε) term cannot be removed for this particular
X since one can use Reed-Solomon codes to obtain embeddings with m = O(1/ε2) (superior to the JL
lemma) once ε ≤ n−Ω(1) [Alo03] (see [NNW14] for details). Specifically, for this X it is possible to achieve
m = O(ε−2 min{logN, ((logN)/ log(1/ε))2}). Note also for this choice of X we can assume that any f is
in fact linear. This is because first we can assume f(0) = 0 by translation. Then we can form a matrix
A ∈ Rm×n such that the ith column of A is f(ei). Then trivially Aei = f(ei) and A0 = 0 = f(0).

The fact that the JL lemma is not optimal for the simplex for small ε begs the question: is the JL lemma
suboptimal for all point sets? This is a major open question in the area of dimensionality reduction, and it
has been open since the paper of Johnson and Lindenstrauss 30 years ago.

Our Main Contribution: For any n > 1 and 0 < ε < 1/2, there is an nO(1)-point subsetX of Rn such that
any embedding f providing the JL guarantee, and where f is linear, must have m = Ω(min{n, ε−2 log n}).
In other words, the JL lemma is optimal in the case where f must be linear.

Our lower bound is optimal: the identity map achieves the first term in the min, and the JL lemma
provides the second. Our lower bound is only against linear embeddings, but as stated before: (1) all known
proofs of the JL lemma give linear f , and (2) for several applications it is important that f be linear.

Before our work there were two possibilities for dimensionality reduction in `2: (i) the target dimension
m could be reduced for all point sets X, at least for small ε as with the simplex using Reed-Solomon codes,
or (ii) there is a higher lower bound for some other point set X which is harder than the simplex. Evidence
existed to support both possibilities. On the one hand the simplex was the hardest case in many respects:
it gave the highest lower bound known on m [Alo03], and it also was a hardest case for the data-dependent
upper bound on m of Gordon [Gor88] (involving the gaussian mean width of the normalized difference vectors
X −X; we will not delve deeper into this topic here). Meanwhile for (ii), random linear maps were the only
JL construction we knew for arbitrary X, and such an approach with random maps is known to require
m = Ω(min{n, ε−2 logN}) [JW13, KMN11] (see Remark 1 below for details).

Thus given the previous state of our knowledge, it was not clear which was more likely between worlds
(i) and (ii). Our lower bound gives more support to (ii), since we not only rule out further improvements
to JL using random linear maps, but rule out improvements using any linear map. Furthermore all known
methods for efficient dimensionality reduction in `2 are via linear maps, and thus circumventing our lower
bound would require a fundamentally new approach to the problem. We also discuss in Section 4 what would
be needed to push our lower bound to apply to non-linear maps.

Remark 1. It is worth noting that the JL lemma is different from the distributional JL (DJL) lemma that
often appears in the literature, sometimes with the same name (though the lemmas are different!). In the
DJL problem, one is given an integer n > 1 and 0 < ε, δ < 1/2, and the goal is to provide a distribution F
over maps f : `n2 → `m2 with m as small as possible such that for any fixed x ∈ Rn

P
f←F

(‖f(x)‖2 /∈ [(1− ε)‖x‖2, (1 + ε)‖x‖2]) < δ.

The existence of such F with small m implies the JL lemma by taking δ < 1/
(
N
2

)
. Then for any z ∈ X −X,

a random f ← F fails to preserve the norm of z with probability δ. Thus the probability that there exists
z ∈ X −X which f fails to preserve the norm of is at most δ ·

(
N
2

)
< 1, by a union bound. In other words,

a random map provides the desired JL guarantee with high probability (and in fact this map is chosen
completely obliviously of the input vectors).

The optimal m for the DJL lemma when using linear maps is understood. The original paper [JL84]
provided a linear solution to the DJL problem with m = O(min{n, ε−2 log(1/δ)}), and this was later shown
to be optimal for the full range of ε, δ ∈ (0, 1/2) [JW13, KMN11]. Thus when δ is set as above, one obtains
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the m = O(ε−2 logN) guarantee of the JL lemma. However, this does not imply that the JL lemma is tight.
Indeed, it is sometimes possible to obtain smaller m by avoiding the DJL lemma, such as the Reed-Solomon
based embedding construction for the simplex mentioned above (which involves zero randomness).

It is also worth remarking that DJL is desirable for one-pass streaming algorithms, since no properties
of X are known when the map f is chosen at the beginning of the stream, and thus the DJL lower bounds of
[JW13, KMN11] are relevant in this scenario. However when allowed two passes or more, one could imagine
estimating various properties of X in the first pass(es) then choosing some linear f more efficiently based on
these properties to perform dimensionality reduction in the last pass. The lower bound of our main theorem
shows that the target dimension could not be reduced by such an approach.

1.1 Proof overview

For any n > 1 and ε ∈ (0, 1/2), we prove the existence of X ⊂ Rn, |X| = N = O(n3), s.t. if for A ∈ Rm×n

(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22 for all x ∈ X, (2)

then m = Ω(ε−2 log n) = Ω(ε−2 logN). Providing the JL guarantee on X ∪ {0} implies satisfying (2), and
therefore also requires m = Ω(ε−2 logN). We show such X exists via the probabilistic method, by letting X
be the union of all n standard basis vectors together with several independent gaussian vectors. Gaussian
vectors were also the hard case in the DJL lower bound proof of [KMN11], though the details were different.

We now give the idea of the lower bound proof to achieve (2). First, we include in X the vectors e1, . . . , en.
Then if A ∈ Rm×n for m ≤ n satisfies (2), this forces every column of A to have roughly unit norm. Then
by standard results in covering and packing (see Eqn. (5.7) of [Pis89]), there exists some family of matrices

F ⊂ ∪nt=1Rt×n, |F| = eO(n2 logn), such that

inf
Â∈F∩Rm×n

‖A− Â‖F ≤
1

nC
(3)

for C > 0 a constant as large as we like, where ‖ · ‖F denotes Frobenius norm. Also, by a theorem of Lata la
[Lat99], for any Â ∈ F and for a random gaussian vector g,

P
g
(|‖Âg‖22 − tr(ÂT Â)| ≥ Ω(

√
log(1/δ) · ‖ÂT Â‖F )) ≥ δ (4)

for any 0 < δ < 1/2, where tr(·) is trace. This is a (weaker version of the) statement that for gaussians, the
Hanson-Wright inequality [HW71] not only provides an upper bound on the tail of degree-two gaussian chaos,
but also is a lower bound. (The strong form of the previous sentence, without the parenthetical qualifier,
was proven in [Lat99], but we do not need this stronger form for our proof – essentially the difference is that
in stronger form, (4) is replaced with a stronger inequality also involving the operator norm ‖ÂT Â‖.)

It also follows by standard gaussian concentration that a random gaussian vector g satisfies

P
g
(|‖g‖22 − n| > C

√
n log(1/δ)) < δ/2 (5)

Thus by a union bound, the events of (4), (5) happen simultaneously with probability Ω(δ). Thus if we
take N random gaussian vectors, the probability that the events of (4), (5) never happen simultaneously for
any of the N gaussians is at most (1−Ω(δ))N = e−Ω(δN). By picking N sufficiently large and δ = 1/poly(n),
a union bound over F shows that for every Â ∈ F , one of the N gaussians satisfies the events of (4) and (5)
simultaneously. Specifically, there exist N = O(n3) vectors {v1, . . . , vN} = V ⊂ Rn such that

• Every v ∈ V has ‖v‖22 = n±O(
√
n lg n)

• For any Â ∈ F there exists some v ∈ V such that |‖Âv‖22 − tr(ÂT Â)| = Ω(
√

lg n · ‖Â‖F ).
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The final definition of X is {e1, . . . , en}∪V . Then, using (2) and (3), we show that the second bullet implies

tr(ÂT Â) = n±O(εn), and |‖Av‖22 − n| = Ω(
√

lnn · ‖ÂT Â‖F )−O(εn). (6)

where ±B represents a value in [−B,B]. But then by the triangle inequality, the first bullet above, and (2),∣∣‖Av‖22 − n∣∣ ≤ ∣∣‖Av‖22 − ‖v‖22∣∣+
∣∣‖v|‖22 − n∣∣ = O(εn+

√
n lg n). (7)

Combining (6) and (7) implies

tr(ÂT Â) =

n∑
i=1

λ̂i ≥ (1−O(ε))n, and ‖ÂT Â‖2F =

n∑
i=1

λ̂2
i = O

(
ε2n2

log n
+ n

)

where (λ̂i) are the eigenvalues of ÂT Â. With bounds on
∑
i λ̂i and

∑
i λ̂i

2
in hand, a lower bound on

rank(ÂT Â) ≤ m follows by Cauchy-Schwarz (this last step is also common to the proof of [Alo03]).

Remark 2. It is not crucial in our proof that N be proportional to n3. Our techniques straightforwardly
extend to show that N can be any value which is Ω(n2+γ) for any constant γ > 0.

2 Preliminaries

Henceforth a standard gaussian random variable g ∈ R is a gaussian with mean 0 and variance 1. If we say
g ∈ Rn is standard gaussian, then we mean that g is a multivariate gaussian with identity covariance matrix
(i.e. its entries are independent standard gaussian). Also, the notation ±B denotes a value in [−B,B]. For
a real matrix A = (ai,j), ‖A‖ is the `2 → `2 operator norm, and ‖A‖F = (

∑
i,j a

2
i,j)

1/2 is Frobenius norm.
In our proof we depend on some previous work. The first theorem is due to Lata la [Lat99] and says that,

for gaussians, the Hanson-Wright inequality is not only an upper bound but also a lower bound.

Theorem 2 ([Lat99, Corollary 2]). There exists universal c > 0 such that for g ∈ Rn standard gaussian and
A = (ai,j) an n× n real symmetric matrix with zero diagonal,

∀t ≥ 1, P
g

(
|gTAg| > c(

√
t · ‖A‖F + t · ‖A‖)

)
≥ min{c, e−t}

Theorem 2 implies the following corollary.

Corollary 1. Let g,A be as in Theorem 2, but where A is no longer restricted to have zero diagonal. Then

∀t ≥ 1, P
g

(
|gTAg − tr(A)| > c(

√
t · ‖A‖F + t · ‖A‖)

)
≥ min{c, e−t}

Proof. Let N be a positive integer. Define g̃ = (g̃1,1, g̃1,2, . . . , g̃1,N , . . . , g̃n,1, g̃n,2, . . . , g̃n,N ) a standard gaus-

sian vector. Then gi is equal in distribution to N−1/2
∑N
j=1 g̃i,j . Define ÃN as the nN × nN matrix formed

by converting each entry ai,j of A into an N ×N block with each entry being ai,j/N . Then

gTAg − tr(A) =

n∑
i=1

n∑
j=1

ai,jgigj − tr(A)
d
=

n∑
i=1

n∑
j=1

N∑
r=1

N∑
s=1

ai,j
N

g̃i,r g̃j,s − tr(A)
def
= g̃T ÃN g̃ − tr(ÃN )

where
d
= denotes equality in distribution (note tr(A) = tr(ÃN )). By the weak law of large numbers

∀λ > 0, lim
N→∞

P
(
|g̃T ÃN g̃ − tr(ÃN )| > λ

)
= lim
N→∞

P
(
|g̃T (ÃN − D̃N )g̃| > λ

)
(8)

where D̃N is diagonal containing the diagonal elements of ÃN . Note ‖ÃN‖ = ‖A‖. This follows since if
we have the singular value decomposition A =

∑
i σiuiv

T
i (where the {ui} and {vi} are each orthonormal,
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σi > 0, and ‖A‖ is the largest of the σi), then ÃN =
∑
i σiu

(N)
i (v

(N)
i )T where u

(N)
i is equal to ui but

where every coordinate is replicated N times and divided by
√
N . This implies |‖ÃN − D̃N‖ − ‖A‖| ≤

‖D̃N‖ = maxi |ai,i|/N = oN (1) by the triangle inequality. Therefore limN→∞ ‖ÃN − D̃N‖ = ‖A‖. Also

limN→∞ ‖ÃN − D̃N‖F = ‖A‖F . Our corollary follows by applying Theorem 2 to the right side of (8).

The next lemma follows from gaussian concentration of Lipschitz functions [Pis86, Corollary 2.3]. It also
follows directly from the Hanson-Wright inequality [HW71].

Lemma 1. For some universal c > 0 and g ∈ Rn a standard gaussian, ∀t > 0 P(|‖g‖22 − n| > c
√
nt) < e−t.

The following corollary summarizes the above in a form that will be useful later.

Corollary 2. For A ∈ Rd×n let λ1 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of ATA. Let g(1), . . . , g(N) ∈ Rn be
independent standard gaussian vectors. For some universal constants c1, c2, δ0 > 0 and any 0 < δ < δ0

P

6 ∃j ∈ [N ] :

{∣∣∣∣∣‖Ag(j)‖22 −
n∑
i=1

λi

∣∣∣∣∣ ≥ c1√ln(1/δ)

(
n∑
i=1

λ2
i

)1/2}
∧

{
|‖g(j)‖22 − n| ≤ c2

√
n ln(1/δ)

} ≤ e−Nδ.
(9)

Proof. We will show that for any fixed j ∈ [N ] it holds that

P

{∣∣∣∣∣‖Ag(j)‖22 −
n∑
i=1

λi

∣∣∣∣∣ ≥ c1√ln(1/δ)

(
n∑
i=1

λ2
i

)1/2}
∧

{
‖g(j)‖22 ≤ n+ c2

√
n ln(1/δ)

} > δ (10)

Then, since the gj are independent, the left side of (9) is at most (1− δ)N ≤ e−δN .
Now we must show (10). It suffices to show that

P
(
|‖g(j)‖22 − n| ≤ c2

√
n ln(1/δ)

)
> 1− δ/2 (11)

and

P

∣∣∣∣∣‖Ag(j)‖22 −
n∑
i=1

λi

∣∣∣∣∣ ≥ c1√ln(1/δ)

(
n∑
i=1

λ2
i

)1/2
 > δ/2 (12)

since (10) would then follow from a union bound. Eqn. (11) follows immediately from Lemma 1 for c2
chosen sufficiently large. For Eqn. (12), note ‖Ag(j)‖22 = gTATAg. Then

∑
i λi = tr(ATA) and (

∑
i λ

2
i )

1/2 =
‖ATA‖F . Then (12) frollows from Corollary 1 for δ smaller than some sufficiently small constant δ0.

We also need a standard estimate on entropy numbers (covering the unit `mn∞ ball by `mn2 balls).

Lemma 2. For any parameter 0 < α < 1, there exists a family Fα ⊆
⋃n
m=1 Rm×n of matrices with the

following two properties:

1. For any matrix A ∈
⋃n
m=1 Rm×n having all entries bounded in absolute value by 2, there is a matrix

Â ∈ Fα such that A and Â have the same number of rows and B = A− Â satisfies tr(BTB) ≤ α/100.

2. |Fα| = eO(n2 ln(n/α)).

Proof. We construct Fα as follows: For each integer 1 ≤ m ≤ n, add all m × n matrices having entries of

the form i
√
α

10n for integers i ∈ {−20n/
√
α, . . . , 20n/

√
α}. Then for any matrix A ∈

⋃n
m=1 Rm×n there is a

matrix Â ∈ Fα such that A and Â have the same number of rows and every entry of B = A− Â is bounded

in absolute value by
√
α

10n . This means that every diagonal entry of BTB is bounded by nα/(100n2) and thus

tr(BTB) ≤ α/100. The size of Fα is bounded by n(40n/
√
α)n

2

= eO(n2 ln(n/α)).
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3 Proof of main theorem

Lemma 3. Let Fα be as in Lemma 2 with 1/ poly(n) ≤ α < 1. Then there exists a set of N = O(n3) vectors
v1, . . . , vN in Rn such that for every matrix A ∈ Fα, there is an index j ∈ [N ] such that

(i) |‖Avj‖22 −
∑
i λi| = Ω

(√
lnn

∑
i λ

2
i

)
.

(ii) |‖vj‖22 − n| = O(
√
n lnn).

Proof. Let g(1), . . . , g(N) ∈ Rn be independent standard gaussian. Let A ∈ Fα and apply Corollary 2 with

δ = n−1/4 = N−1/12. With probability 1− e−Ω(n3−1/4), one of the g(j) for j ∈ [N ] satisfies (i) and (ii) for A.

Since |Fα| = eO(n2 ln(n/α)), the claim follows by a union bound over all matrices in Fα.

Theorem 3. For any 0 < ε < 1/2, there exists a set V ⊂ Rn, |V | = N = n3 + n, such that if A is a matrix
in Rm×n satisfying ‖Avi‖22 ∈ (1± ε)‖vi‖22 for all vi ∈ V , then m = Ω(min{n, ε−2 lg n}).

Proof. We can assume ε > 1/
√
n since otherwise an m = Ω(n) lower bound already follows from [Alo03].

To construct V , we first invoke Lemma 3 with α = ε2/n2 to find n3 vectors w1, . . . , wn3 such that for all
matrices Ã ∈ Fε2/n2 , there exists an index j ∈ [n3] for which:

1. |‖Ãwj‖22 −
∑
i λ̃i| ≥ Ω

(√
(lnn)

∑
i λ̃

2
i

)
.

2. |‖wj‖22 − n| = O(
√
n lnn).

where λ̃1 ≥ · · · ≥ λ̃n ≥ 0 denote the eigenvalues of ÃT Ã. We let V = {e1, . . . , en, w1, . . . , wn3} and claim
this set of N = n3 + n vectors satisfies the theorem. Here ei denotes the i’th standard unit vector.

To prove this, let A ∈ Rm×n be a matrix with m ≤ n satisfying ‖Av‖22 ∈ (1± ε)‖v‖22 for all v ∈ V . Now
observe that since e1, . . . , en ∈ V , A satisfies ‖Aei‖22 ∈ (1± ε)‖ei‖22 = (1± ε) for all ei. Hence all entries ai,j
of A must have a2

i,j ≤ (1 + ε) < 2 (and in fact, all columns of A have `2 norm at most
√

2). This implies

that there is an m × n matrix Â ∈ Fε2/n2 such that B = A − Â = (bi,j) satisfies tr(BTB) ≤ ε2/(100n2).
Since tr(BTB) = ‖B‖2F , this also implies ‖B‖F ≤ ε/(10n). Then by Cauchy-Schwarz,

n∑
i=1

λ̂i = tr(ÂT Â)

= tr((A−B)T (A−B))

= tr(ATA) + tr(BTB)− tr(ATB)− tr(BTA)

=

n∑
i=1

‖Aei‖22 + tr(BTB)− tr(ATB)− tr(BTA)

= n± (O(εn) + 2n ·max
j

(
∑
i

b2i,j)
1/2 ·max

k
(
∑
i

a2
i,k)1/2)

= n± (O(εn) + 2n · ‖B‖F ·
√

2)

= n±O(εn).

Thus from our choice of V there exists a vector v∗ ∈ V such that

(i) |‖Âv∗‖22 − n| ≥ Ω

(√
(lnn)

∑
i λ̂

2
i

)
−O(εn).

(ii) |‖v∗‖22 − n| = O(
√
n lnn).

Note ‖B‖2 ≤ ‖B‖2F = tr(BTB) ≤ ε2/(100n2) and ‖Â‖2 ≤ ‖Â‖2F ≤ (‖A‖F + ‖B‖F )2 = O(n2). Then by (i)
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(iii)

|‖Av∗‖22 − n| = |‖Âv∗‖22 + ‖Bv∗‖22 + 2〈Âv∗, Bv∗〉 − n|

≥ Ω

√(lnn)
∑
i

λ̂2
i

− ‖Bv∗‖22 − 2|〈Âv∗, Bv∗〉| −O(εn)

≥ Ω

√(lnn)
∑
i

λ̂2
i

− ‖B‖2 · ‖v∗‖22 − 2‖B‖ · ‖A‖ · ‖v∗‖22 −O(εn)

= Ω

√(lnn)
∑
i

λ̂2
i

−O(εn).

We assumed |‖Av∗‖22 − ‖v∗‖22| = O(ε‖v∗‖22) = O(εn). Therefore by (ii),∣∣‖Av∗‖22 − n∣∣ ≤ ∣∣‖Av∗‖22 − ‖v∗‖22∣∣+
∣∣‖v∗‖22 − n∣∣

= O(εn+
√
n lnn),

which when combined with (iii) implies

n∑
i=1

λ̂2
i = O

(
ε2n2

lnn
+ n

)
.

To complete the proof, by Cauchy-Schwarz since exactly rank(ÂT Â) of the λ̂i are non-zero,

n2

2
≤

(
n∑
i=1

λ̂i

)2

≤ rank(ÂT Â) ·

(
n∑
i=1

λ̂i
2

)
≤ m ·O

(
ε2n2

lnn
+ n

)
Rearranging gives m = Ω(min{n, ε−2 lnn}) = Ω(min{n, ε−2 lnN}) as desired.

4 Discussion

One obvious future direction is to obtain an m = Ω(min{n, ε−2 logN}) lower bound that also applies to
non-linear maps. Our hard set X contains N = O(n3) points in Rn (though as remarked earlier, our
techniques easily imply N = O(n2+γ) points suffice). Any embedding f could be assumed linear without
loss of generality if the elements of X were linearly independent, but clearly this cannot happen if N > n (as
is the case for our X). Thus a first step toward a lower bound against non-linear embeddings is to obtain
a hard X with N = |X| as small as possible. One step in this direction could be the following. Observe
that our lower bound only uses that ‖f(x)‖2 ≈ ‖x‖2 for each x ∈ X, whereas the full JL lemma requires
that all distance vectors X −X have their norms preserved. Thus one could hope to exploit this fact and
take |X| = Θ(n1+γ), say, since then X − X would still have the Θ(n2+γ) points needed to carry out the
union bound of Lemma 3. The problem is that these Θ(n2+γ) points would not be independent, and thus
the argument of Corollary 2 would not apply. A more careful argument would have to be crafted. Of course,
one would still need a further idea to then reduce N from Θ(n1+γ) down to n.
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