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Abstract

We settle the 1-pass space complexity of (1 ± ε)-
approximating the Lp norm, for real p with 1 ≤ p ≤ 2,
of a length-n vector updated in a length-m stream with
updates to its coordinates. We assume the updates are
integers in the range [−M,M ]. In particular, we show
the space required is Θ(ε−2 log(mM) + log log(n)) bits.
Our result also holds for 0 < p < 1; although Lp is not
a norm in this case, it remains a well-defined function.
Our upper bound improves upon previous algorithms of
[Indyk, JACM ’06] and [Li, SODA ’08]. This improve-
ment comes from showing an improved derandomization
of the Lp sketch of Indyk by using k-wise independence
for small k, as opposed to using the heavy hammer of a
generic pseudorandom generator against space-bounded
computation such as Nisan’s PRG. Our lower bound
improves upon previous work of [Alon-Matias-Szegedy,
JCSS ’99] and [Woodruff, SODA ’04], and is based on
showing a direct sum property for the 1-way communi-
cation of the gap-Hamming problem.

1 Introduction

Computing over massive data streams is increasingly
important. Large data sets, such as sensor networks,
transaction data, the web, and network traffic, have
grown at a tremendous pace. It is impractical for most
devices to store even a small fraction of the data, and
this necessitates the design of extremely space-efficient
algorithms. Such algorithms are often only given a
single pass over the data, e.g., it may be expensive to
read the contents of an external disk multiple times, and
in the case of an internet router, it may be impossible
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to make multiple passes.
Even very basic statistics of a data set cannot be

efficiently computed exactly or deterministically in this
model, and so algorithms must be both approximate
and probabilistic. This model is known as the streaming
model and has become popular in the theory commu-
nity, dating back to the works of Munro and Paterson
[34] and Flajolet and Martin [15], and resurging with
the work of Alon, Matias, and Szegedy [2]. For a survey
of results, see the book by Muthukrishnan [35], or notes
from Indyk’s course [24].

A fundamental problem in this area is that of
norm estimation [2]. Formally, we have a vector x =
(x1, . . . , xn) initialized as x = ~0, and a stream of m
updates, where an update (i, v) ∈ [n] × {−M, . . . ,M}
causes the change xi ← xi + v. This model is known
as the turnstile model of streaming. In this work we
consider the following problem:

Problem: Output a (1±ε)-approximation to the value
Lp(x) = (

∑n
i=1 |xi|p)

1/p with success probability 2/3,
over the randomness of the algorithm’s private coins.

We allow for both multiplicative approximation and
probability of error since it is known that linear space is
required without these relaxations [2], and here we are
concerned with small-space algorithms. Sometimes this
problem is posed as estimating Fp(x) = Lpp(x), which is
called the pth frequency moment of x.1 A large body of
work has been done in this area, see, e.g., the references
in [24, 35].

It is known that not all Lp norms can be efficiently
approximated in a data stream. In particular, [5,
8] show that polynomial space in n,m is required
for p > 2, whereas space polylogarithmic in these
parameters is achievable for 0 < p ≤ 2 [2, 23].2

In this work, we focus on this feasible regime for
p and consider the following question: what exactly

1Note that for constant p bounded away from 0, which is the
focus of our work, (1±ε)-approximating Lp and Fp are equivalent

up to a constant factor change in the approximation parameter ε.
2When 0 < p < 1, Lp is not a norm since it does not satisfy

the triangle inequality, though it is still well-defined.



is the space complexity of norm estimation for 0 <
p ≤ 2? We remark that streaming approximations to
Lp in this range area interesting for several reasons.
L1 estimation is used as a subroutine for dynamic
earthmover distance approximation [22], approximate
linear regression and best rank-k approximation of a
matrix (with respect to the L1 norm) [14], cascaded
norm estimation of a matrix [26], and network traffic
monitoring [13]. L2 estimation is useful for database
query optimization [1] and network traffic anomaly
detection [28]. Both L1 and L2 estimation subroutines
are used in approximate histogram maintenance [19].
Norm estimation for fractional p was shown useful for
mining tabular data in [11] (p = 0.5 and p = 0.25 were
specifically suggested), and Lp estimation for fractional
p near 1 is used as a subroutine for estimating empirical
entropy, which in turn is again useful for network traffic
anomaly detection (see [21] and the references therein).
Also, Lp estimation for all 0 < p ≤ 2 is used as a
subroutine for weighted sampling in turnstile streams
[33].

1.1 Contributions We resolve the space complexity
of Lp-estimation for 0 < p ≤ 2 up to constant factors.
In particular, the space complexity is Θ(ε−2 log(mM)+
log log(n)) bits. For p strictly less than 2, our upper
bound is new, and our lower bound is new for all
0 < p ≤ 2. Henceforth, we omit an implicit additive
log log n which exists in all the Lp space upper and lower
bounds (justification is in Section A.1).

1.1.1 Tight upper bounds for Lp-estimation
Our first contribution is the first optimal 1-pass space
upper bound for Lp-estimation, 0 < p < 2. In par-
ticular, we give an improved derandomization of In-
dyk’s algorithm [23] to use k-wise independence for
small k as opposed to Nisan’s pseudorandom generator
[36] against space-bounded computation. Our improved
derandomization allows for an implementation using
O(ε−2 log(mM)) bits of space. An algorithm achieving
this bound was previously known only for p = 2 [2]. In
the case of 0 < p < 2, the previously most space-efficient
algorithms are due to Indyk [23] and Li [30], both requir-
ing O(ε−2 log(mM) log(N)) space withN = min{n,m}.
A more prudent analysis of the seed length Nisan’s gen-
erator requires to fool Indyk’s algorithm can give a space
bound of O(ε−2 log(mM) + log(mM) log(N)), but this
is still suboptimal. PRGs are a central tool in the de-
sign of streaming algorithms, and Indyk’s algorithm had
become the canonical example of a streaming algorithm
for which no derandomization more efficient than via
a generic PRG was known. We believe that removing
this heavy hammer from norm estimation is an impor-

tant step forward in improving the derandomization of
streaming algorithms.

To see where our improvement comes from, let us
recall Indyk’s algorithm. That algorithm maintains a
linear sketch of the vector x, i.e. the matrix-vector
product Ax = y for some r × n matrix A. In his
sketch, r = Θ(1/ε2). The matrix entries Ai,j are all
i.i.d. from a discretized p-stable distribution Dp. The
distribution Dp has the property that for all vectors
x ∈ Rn and i.i.d. random variables {Zi}ni=1 distributed
according to Dp, it holds that

∑n
i=1 Zixi ∼ ||x||pZ,

where Z ∼ Dp. His algorithm then returns the median
of the |yj | for j ∈ [r]. Li [30] maintains the same linear
sketch, but provides several different estimators which
have certain advantages over Indyk’s median estimator.
The main issue with Indyk’s algorithm, and also Li’s, is
that the number of bits required to store A is Ω(N/ε2),
which a polylogarithmic-space algorithm cannot afford.
Indyk remedied this problem by using Nisan’s PRG
[36] to generate the matrix from a short seed, which a
small-space algorithm can afford to store. However, the
seed length required by Nisan’s PRG was an O(log(N))
factor larger than the algorithm’s storage, causing the
overall space to increase by this factor.

We first show that Indyk’s algorithm has a more
efficient derandomization. Rather than using Nisan’s
PRG, we show that it suffices for the entries in each
row of A to be k-wise independent for k = Õ(1/εp),
and that the seeds used to generate each row need only
be pairwise independent. This statement, together with
bounds on the precision required throughout the algo-
rithm, implies O(ε−2 log(mM)) space suffices for p < 2.
Though, since the time to process a stream update is
O(kr), it is desirable to have k as small as possible. We
then give an alternative estimator to Indyk’s median es-
timator for which we show k = O(log(1/ε)/ log log(1/ε))
suffices, thus yielding an algorithm which also has opti-
mal space, but with improved update time.

Other work on Lp estimation for 0 < p ≤ 2 includes
the work of Ganguly and Cormode [18], which requires a
suboptimal O(ε−(2+p) logO(1)(mM)) bits of space, but
at the benefit of requiring logO(1)(mM) update time
independent of ε.

We remark here that our techniques seem possibly
applicable to other derandomization questions. For ex-
ample, using our techniques one can give an alternative
proof of one of the key components used in [12] to show
that bounded independence fools halfspaces. In partic-
ular, for a ∈ Rn with ||a||2 = 1 and θ ∈ R, consider the
function fa,θ(x) = sgn(〈a, x〉 − θ) where x ∈ {−1, 1}n.
The work of [12] showed that Ex[fa,θ(x)] is preserved to
within O(ε) even if the xi are only k(ε)-wise indepen-
dent for k(ε) = O(ε−2 log2(1/ε)). At a high level, their



proof proceeded in two main steps: (a) reduce the gen-
eral case to regular halfspaces, where |ai| < ε for all i,
then (b) show that k(ε)-wise independence fools regular
halfspaces. We show in Section A.5 that our techniques
naturally apply to give an alternative proof of (b), with
the slightly weaker bound k(ε) = ε−2 log2+o(1)(1/ε).

1.1.2 Tight space lower bounds for Lp-
estimation We show a space lower bound of
Ω(min{N, ε−2 log(ε2mM)}) bits for all 0 < p ≤ 2. This
is Ω(ε−2 log(mM)) for ε ≥ 1/N1/2−δ for any constant
δ > 0, matching our upper bound in this range. This is
perhaps the most interesting range for ε since the fol-
lowing trivial algorithms are always possible: maintain
the entire vector, or entire stream, in memory. Thus
when ε < 1/

√
N , the cheaper of these solutions has cost

O(N log(mM)) (Section A.1.1 justifies avoiding loga-
rithmic dependence on n), showing that trivial solutions
are already nearly optimal for such small ε.

The previous lower bound was Ω(min{N, ε−2 +
logN}), and is the result of a sequence of work [2, 6, 38].
See [25, 39] for simpler proofs. Given our lower bound
and algorithm above, and the L2-estimation algorithm
of Alon, Matias, and Szegedy [2], the space complex-
ity of Lp-estimation is now resolved for all 0 < p ≤ 2.
Our bound holds even when each coordinate is up-
dated twice, implying that our algorithm (and a previ-
ous algorithm of Feigenbaum et al. [13]) is space-optimal
even for the simpler problem of L1-difference estima-
tion. Our lower bound is also the first to have loga-
rithmic dependence on mM (previously only a folklore
Ω(log log(mM)) bound was known via reduction from
the communication complexity of Equality).

Our lower bounds are based upon embedding multi-
ple geometrically-growing hard instances for estimating
Lp in an insertion-only stream into a stream, and using
the deletion property together with the geometrically-
growing property to reduce the problem to solving a sin-
gle hard instance. More precisely, a hard instance for
Lp is based on a reduction from a two-party commu-
nication game in which the first party, Alice, receives
a string x ∈ {0, 1}ε−2

, and Bob an index i ∈ [ε−2],
and Alice sends a single message to Bob who must out-
put xi with constant probability. This problem, known
as Indexing, requires Ω(ε−2) communication. To re-
duce it to estimating Lp in an insertion-only stream,
there is a reduction [38, 39] through the gap-Hamming
problem for which Alice creates a stream Sx and Bob a
stream Si, with the property that either Lp(Sx ◦ Si) ≥
ε−2/2 + ε−1/2, or Lp(Sx ◦ Si) ≤ ε−2/2 − ε−1/2. Here,
“◦” denotes concatenation of two streams. Thus, any
1-pass streaming algorithm which (1± ε)-approximates
Lp requires space which is at least the communication

cost of Indexing, namely, Ω(ε−2).
We instead consider the Augmented-Indexing

problem. Set t = Θ(ε−2 log(M)) (a different setting
is made to gain the dependence on m). We give
Alice a string x ∈ {0, 1}t, and Bob both an index
i ∈ [t] together with xi+1, . . . , xt. This problem requires
Ω(t) bits of communication if Alice sends only a single
message to Bob [4, 32]. Alice splits x into b = ε2t
equal-sized blocks X0, . . . , Xb−1. In the j-th block she
uses the ε−2 bits in that block to create a stream
SXj that is similar to what she would have created
in the insertion-only case, but each non-zero item is
given frequency roughly 2j/p, so that it contributes
2j to Fp. Given i, Bob finds the block j in which i
belongs, and creates a stream Si as in the insertion-only
case, but where each non-zero item is given frequency
roughly −2j/p. Moreover, Bob can create all the
streams SXj′ for blocks j′ above block j. Bob inserts
all of these latter stream items as deletions, while Alice
inserts them as insertions. Thus, when running an Fp-
estimation algorithm on Alice’s list of streams followed
by Bob’s, all items in streams SXj′ vanish. Due to the
geometrically increasing contribution of blocks to Fp,
approximating Fp well on the entire stream corresponds
to approximating Fp well on SXj ◦ Si, and thus a
(1 ± ε)-approximation algorithm to Fp can be used to
solve Augmented-Indexing. Our technique can be
viewed as showing a direct sum property for the one-
way communication complexity of gap-Hamming.

Variations on our proof can also be used to show
lower bounds for p = 0, for additive entropy estimation,
and for norm estimation in the strict turnstile model
(where no xi can ever be negative). A discussion is in
Section 3. Variants of our techniques were also useful
for obtaining tight bounds for linear algebra problems
in a stream [10] and in compressed sensing [3].

1.2 Notation For integer z > 0, [z] denotes the set
{1, . . . , z}. All our space bounds are measured in bits.
The variables n,m,M denote vector length, stream
length, and the maximum absolute value of a frequency
update, respectively, and N denotes min{n,m}. For
a function f : R → R and nonnegative integer `, f (`)

denotes the `th derivative of f , with f (0) = f . We also
often use x ≈ε y to state that |x− y| = O(ε).

2 Optimal Lp Estimation (0 < p < 2)
Here we describe a proof that Indyk’s Lp-estimation al-
gorithm can be more efficiently derandomized (Figure 1)
to produce a space-optimal algorithm, though with up-
date time Õ(ε−2−p). We then describe a new algorithm
(Figure 2) which maintains space-optimality while hav-
ing update time only Õ(ε−2). The tilde notation here



1. Pick a random matrix A ∈ Rr×n as follows for r = Θ(1/ε2). Each Ai,j is distributed according to
Dp. For fixed i, the Ai,j are k-wise independent with k = Θ(ε−p log3p(1/ε)). For i 6= i′, the seeds
used to generate the {Ai,j}nj=1 and {Ai′,j}nj=1 are pairwise independent.

2. Maintain the vector y = Ax throughout the stream.

3. Output median{|yi|}ri=1/median(|Dp|).

Figure 1: Indyk’s derandomized Lp estimation algorithm pseudocode, 0 < p < 2, assuming infinite precision.
Remarks on computing median(|Dp|) are in Section A.2.

hides logO(1)(1/ε) factors.
We assume p ∈ (0, 2) is a fixed constant bounded

away from 0. Some constants in our asymptotic no-
tation are functions of p. We also assume ||x||p > 0;
||x||p = 0 is detected when y = 0 in both Figure 1 and
Figure 2. Finally, we assume ε ≥ 1/

√
m. Otherwise, the

trivial solution of keeping the entire stream in memory
requires O(m log(nM)) = O(ε−2 log(nM)) space, which
can be made O(ε−2 log(mM)) by the argument in Sec-
tion A.1.1. Our first main theorem is the following.

Theorem 2.1. For all p ∈ (0, 2), the algorithm of
Figure 1 can be implemented with limited precision to
use space O(ε−2 log(mM)) and output (1± ε)||x||p with
probability at least 7/8.

To understand the first step of Figure 1, we recall
the definition of a p-stable distribution.

Definition 2.1. (Zolotarev [41]) For 0 < p < 2,
there exists a probability distribution Dp called the p-
stable distribution with E[eitZ ] = e−|t|

p

for Z ∼ Dp.
For any n and vector x ∈ Rn, if Z1, . . . , Zn ∼ Dp are
independent, then

∑n
j=1 Zjxj ∼ ||x||pZ for Z ∼ Dp.

We also state a lemma giving the decay of the
density function of Dp, which will be useful later.

Lemma 2.1. (Nolan [37, Theorem 1.12]) For fixed
0 < p < 2, the probability density function of the p-
stable distribution is Θ(|x|−p−1) for large |x|.

We now prove the following technical lemma, which
plays a role in our later analyses.

Lemma 2.2. There exists an ε0 > 0 such that the
following holds. Let n be a positive integer and 0 <
ε < ε0, 0 < p < 2 be given. Let f : R → R satisfy
||f (`)||∞ = O(α`) for all ` ≥ 0, for some α satisfying
αp ≥ log(1/ε). Let k = αp. Let a ∈ Rn satisfy
||a||p = O(1). Let Xi be a 3Ck-independent family of
p-stable random variables for C a suitably large even
constant. Let Yi be a fully independent family of p-stable
random variables. Let X =

∑
i aiXi and Y =

∑
i aiYi.

Then E[f(X)] = E[f(Y )] +O(ε).

Proof. The basic idea of the proof will be to show that
the expectation can be computed to within O(ε) just by
knowing that the Xi’s are O(k)-wise independent. Our
main idea is to approximate f by a Taylor series and use
our knowledge of the moments of the Xi. The problem
is that the tails of p-stable distributions for p < 2 are
wide, and hence the expectations of the moments are
infinite. We circumvent this difficulty via a combination
of truncation and approximate inclusion-exclusion.

Define the random variables

Ui =

{
1 if |aiXi| > λ

0 otherwise

and

X ′i = (1− Ui)Xi =

{
0 if |aiXi| > λ

Xi otherwise
,

where we set λ = 1/α. We note a couple of properties
of these. First,

E[Ui] = O

(∫ ∞
|ai|−1λ

x−1−pdx

)
= O

(
|ai|pλ−p

)
by Lemma 2.1. We would also like to bound the
moments of X ′i. We note that E[(aiX ′i)

`] is 1 for ` = 0,
by symmetry is 0 when ` is odd, and otherwise is

O

(∫ |ai|−1λ

0

(aix)`x−p−1

)
= O

(
|ai|`(|ai|−1λ)`−p

)(2.1)

= O
(
|ai|pλ`−p

)
where the implied constant above can be chosen to hold
independently of `.

For S ⊆ [n], let 1S be the indicator random variable
for the event

S = {i : Ui = 1}.

Then since
∑
S⊆[n] 1S = 1 for any point in the proba-



bility space,
(2.2)

E[f(X)] = E

 ∑
S⊆[n]

1S · f(X)

 =
∑
S⊆[n]

E[1S · f(X)].

Now let 1′S be the indicator random variable for the
event

S ⊆ {i : Ui = 1}

so that

1S = 1′S ·

(∏
i/∈S

(1− 1′{i})

)
=

∑
T⊂[n]\S

(−1)|T |1′S∪T ,

and define

FS,T

(−→
X
)

= (−1)|T |
( ∏
i∈S∪T

Ui

)
f

∑
i∈S

aiXi +
∑
i6∈S

aiX
′
i

 .

Then, by definition of Ui and Eq. (2.2),

E[f(X)] = E

 ∑
S⊆[n]

∑
T⊆[n]\S

FS,T

(−→
X
) .

We will approximate E[f(X)] as

(2.3) E

 ∑
S⊆[n]
|S|≤Ck

∑
T⊆[n]\S
|T |≤Ck

FS,T

(−→
X
) .

That is, we approximate E[f(X)] using approximate
inclusion-exclusion, by truncating the summation to
not include large S, T . Call the function inside the
expectation in Eq. (2.3) F

(−→
X
)

. We would like to

bound the error in approximating f(X) by F
(−→
X
)

. Fix
values of the Xi, and let O be the set of i with Ui = 1.
We note that

F
(−→
X
)

=
∑
S⊆O
|S|≤Ck

∑
T⊆O\S
|T |≤Ck

(−1)|T |f

∑
i∈S

aiXi +
∑
i6∈S

aiX
′
i

 .

Notice that other than the (−1)|T | term, the expression
inside the sum does not depend on T . This means that if
0 < |O\S| ≤ Ck then the inner sum is 0, since O\S will
have exactly as many even subsets as odd ones. Hence

if |O| ≤ Ck, we have that

F
(−→
X
)

=
∑
S=O

f

∑
i∈S

aiXi +
∑
i 6∈S

aiX
′
i


= f

∑
i∈O

aiXi +
∑
i 6∈O

aiX
′
i


= f(X).

Otherwise, after fixing O and S, we can sum over
possible values of t = |T | and obtain:

∑
T⊆O\S
|T |≤Ck

(−1)|T | =
Ck∑
t=0

(−1)t
(
|O\S|
t

)
.

In order to bound this we use the following lemma.

Lemma 2.3. For integers A ≥ B + 1 > 0 we have that∑B
i=0(−1)i

(
A
i

)
and

∑B+1
i=0 (−1)i

(
A
i

)
have different signs,

with the latter sum being 0 if A = B + 1.

Proof. First suppose that B < A/2. We note
that since the terms in each sum are increasing in i,
each sum has the same sign as its last term, proving
our result in this case. For B ≥ A/2 we note that∑A
i=0(−1)i

(
A
i

)
= 0, and hence letting j = A − i,

we can replace the sums by (−1)A+1
∑A−B−1
j=0 (−1)j

(
A
j

)
and (−1)A+1

∑A−B−2
j=0 (−1)j

(
A
j

)
, reducing to the case of

B′ = A−B − 1 < A/2. �

Using Lemma 2.3, we note that
∑Ck
t=0(−1)t

(|O\S|
t

)
and

∑Ck+1
t=0 (−1)t

(|O\S|
t

)
have different signs. Therefore

we have that∣∣∣∣∣
Ck∑
t=0

(−1)t
(
|O\S|
t

)∣∣∣∣∣ ≤
(
|O\S|
Ck + 1

)
=
(
|O| − |S|
Ck + 1

)
.

Recalling that ||f ||∞ is bounded, we are now ready to
bound

∣∣∣F (−→X)− f(X)
∣∣∣. Recall that if |O| ≤ Ck, this

difference is 0, and otherwise we have that∣∣∣F (−→X)− f(X)
∣∣∣ ≤ ||f ||∞ · ∑

S⊆O
|S|≤Ck

(
|O| − |S|
Ck + 1

)

= O

(
Ck∑
s=0

(
|O|
s

)(
|O| − s
Ck + 1

))

= O

(
Ck∑
s=0

(
|O|

Ck + s+ 1

)(
Ck + s+ 1

s

))

= O

(
Ck∑
s=0

2Ck+s+1

(
|O|

Ck + s+ 1

))
.



Therefore we can bound the error as∣∣∣E [F (−→X)]−E[f(X)]
∣∣∣(2.4)

= O

(
Ck∑
s=0

2Ck+s+1E
[(

|O|
Ck + s+ 1

)])
.

We note that(
|O|

Ck + s+ 1

)
=

∑
I⊆[n]

|I|=Ck+s+1

∏
i∈I

Ui.

Hence by linearity of expectation, (2Ck + 1)-wise inde-
pendence, and the fact that s ≤ Ck,

E
[(

|O|
Ck + s+ 1

)]
=

∑
I⊆[n]

|I|=Ck+s+1

E

[∏
i∈I

Ui

]

=
∑
I⊆[n]

|I|=Ck+s+1

∏
i∈I

O(|ai|pλ−p)

= eO(Ck)
∑
I⊆[n]

|I|=Ck+s+1

(∏
i∈I
|ai|pλ−p

)
.

We note when this sum is multiplied by (Ck + s +
1)!, these terms all show up in the expansion of(
||a||ppλ−p

)Ck+s+1. In fact, for any integer 0 ≤ t ≤ n,

(2.5)
∑
I⊆[n]
|I|=t

(∏
i∈I
|ai|pλ−p

)
≤

(||a||ppλ−p)t

t!
.

Hence, since ||a||p = O(1),

E
[(

|O|
Ck + s+ 1

)]
=

eO(Ck)λ−p(Ck+s+1)

(Ck + s+ 1)!

= eO(Ck)

(
λ−p

Ck

)(Ck+s+1)

.

Therefore, by choice of λ and Eq. (2.4),

∣∣∣E [F (−→X)]−E[f(X)]
∣∣∣ = eO(Ck)

Ck∑
s=0

(
λ−p

Ck

)(Ck+s+1)

= C−O(Ck) = O(ε).(2.6)

Hence it suffices to approximate E
[
F
(−→
X
)]

.
Recall

F
(−→
X
)

=
∑

S,T⊆[n]
|S|,|T |≤Ck
S∩T=∅

FS,T

(−→
X
)
.

We will attempt to compute the conditional expec-
tation of FS,T

(−→
X
)

, conditioned on the Xi for i ∈ S∪T .
Note the independence on the Xi’s is sufficient that the
values of the Xi for i ∈ S ∪ T are fully independent of
one another, and that even having fixed these values,
the remaining Xi are still Ck-wise independent.

We begin by making some definitions. Let R =
[n]\(S ∪T ). Having fixed S, T , and the values of Xi for
i ∈ S ∪T , set c =

∑
i∈S aiXi and X ′ =

∑
i∈R aiX

′
i. We

note that FS,T
(−→
X
)

= 0 unless Ui = 1 for all i ∈ S ∪ T ,

and otherwise that FS,T

(−→
X
)

= f(c + X ′). This is
because if Ui = 1 for some i ∈ T , then X ′i = 0. Let
pc(x) be the Taylor series for f(c+x) about 0, truncated
so that its highest degree term is degree Ck − 1. We
approximate E[f(c+X ′)] by E[pc(X ′)].

Lemma 2.4. |E[f(c+X ′)]−E[pc(X ′)]| < e−Ck.

Proof. By Taylor’s theorem, the fact that C is even,
and our given bounds on ||f (Ck)||∞,

|pc(x)− f(c+ x)| ≤ |x|
CkαCk

(Ck)!
=
xCkαCk

(Ck)!
.

We note that E[pc(X ′)] is determined simply by the
independence properties of the Xi since it is a low-
degree polynomial in functions of the Xi.

We now attempt to bound the error in approxi-
mating f(c + x) by pc(x). In order to do so we will
wish to bound E[(X ′)Ck]. Let ` = Ck. We have that
E[(X ′)`] = E

[(∑
i∈R aiX

′
i

)`]. Expanding this out and
using linearity of expectation yields a sum of terms of
the form E

[∏
i∈R(aiX ′i)

`i
]
, for some non-negative in-

tegers `i summing to `. Let L be the set of i so that
`i > 0. Since |L| ≤ ` which is at most the degree of
independence, Eq. (2.1) implies that the above expecta-
tion is

(∏
i∈L |ai|pλ−p

)
λ`eO(|L|). Notice that the sum

of the coefficients in front of such terms with a given
L is at most |L|`. This is because for each term in the
product, we need to select an i ∈ L. Eq. (2.5) implies
that summing

∏
i∈L |ai|pλ−p over all subsets L of size s,

gives at most (||a||ppλ
−p)s

s! . Putting everything together:

E
[
(X ′)`

]
≤

∑̀
s=1

s`λ`−speO(s)

s!

=
∑̀
s=1

exp(` log s− s log s(2.7)

− (`− sp) log(1/λ) +O(s)).

The summand (ignoring the O(s)) is maximized when

`

s
+ log(1/λp) = log(s) + 1.



Rearranging terms and setting u = ` · λp, this happens
when ` = s log(λp · s) + s, which occurs for

s =
(

1 +O

(
log log(u)

log(u)

))
· `

log(u)
.

Since the sum is at most ` times the biggest term,

E
[
(X ′)`

]
≤ exp

(
` ·

(
log(`)− log log(u)− log(`)

log(u)

− log(1/λ) +
log(1/λp)

log(u)
+O(1)

))
.

Therefore we have that

|E[f(c+X ′)]−E[pc(X ′)]| ≤ E
[

(X ′)`α`

`!

]
≤ exp

(
` ·

(
log(α)− log log(u)− log(`)

log(u)

−
(

1− p

log(u)

)
log(1/λ) +O(1)

))

= exp

(
` ·

(
log(α)− log log(u)− log(`)

log(u)

−
(

1
p
− 1

log(u)

)
log(`/u) +O(1)

))
= exp

(
` ·
(

log(α)− log log(u)− log(`1/p)

+ log(u1/p) +O(1)
))

= exp
(
−` ·

(
log
(

1
α · λ

)
+ log log(u)−O(1)

))
< e−`

with the last inequality holding for C (and hence u) a
sufficiently large constant. �

So to summarize:

E[f(X)] = E
[
F
(−→
X
)]

+O(ε).

Now,

E
[
F
(−→
X
)]

=
∑

S,T⊆[n]
|S|,|T |≤Ck
S∩T=∅

E
[
FS,T

(−→
X
)]

=
∑

S,T⊆[n]
|S|,|T |≤Ck
S∩T=∅

(−1)|T |
∫
{xi}i∈S∪T

(( ∏
i∈S∪T

Ui

)
×

E[f(c+X ′)]

)
dXi(xi)

=
∑

S,T⊆[n]
|S|,|T |≤Ck
S∩T=∅

(−1)|T |
∫
{xi}i∈S∪T

(( ∏
i∈S∪T

Ui

)
×

(
E[pc(X ′)]± e−Ck

))
dXi(xi).

We recall that the term involving E[pc(X ′)] is entirely
determined by the 3Ck-independence of the Xi’s. We
are left with an error of magnitude

e−Ck ·


∑

S,T⊆[n]
|S|,|T |≤Ck
S∩T=∅

(−1)|T |
∫
{xi}i∈S∪T

( ∏
i∈S∪T

Ui

)
dXi(xi)



≤ e−Ck ·


∑

S,T⊆[n]
|S|,|T |≤Ck
S∩T=∅

E

[ ∏
i∈S∪T

Ui

]

≤ e−Ck ·


∑

S,T⊆[n]
|S|,|T |≤Ck
S∩T=∅

( ∏
i∈S∪T

|ai|pλ−p
)
eO(|S|+|T |)

 .

Letting s = |S|+ |T |, we change this into a sum over s.
We use Eq. (2.5) to upper bound the product. We also
note that given S∪T , there are at most 2s ways to pick
S and T . Putting this together and recalling the choice
of λ and that ||a||p = O(1), the above is at most

e−Ck

(
2Ck∑
s=0

2s
( ||a||psp λ−ps

s!

)
eO(s)

)
= e−Ck

(
2Ck∑
s=0

O
(

1
λp

)s
s!

)
< e−Ck · eO( 1

λp ) = O(ε).(2.8)

Hence E[f(X)] is determined up to O(ε). �



Remark 2.1. For constant α in the statement of
Lemma 2.2, one can slightly optimize the proof to show
that k = log(1/ε)/ log log(1/ε) suffices. We describe
here the necessary changes in the proof. First, we in-
stead set λ = (Ck)−1/10. In the first inequality where
the value of λ is used, namely Eq. (2.6), the desired
difference is then (Ck)−O(Ck) = O(ε). Next, in the
proof of Lemma 2.4, the summand in Eq. (2.7) is max-
imized when s = O(`/ log `), and straightforward calcu-
lations show that the desired difference in the statement
of Lemma 2.4 is O(ε2). The left hand side of Eq. (2.8)
is then at most O(ε2) · eO(1/λp), which is still O(ε).

Before we prove Theorem 2.1 we state the following
lemma, whose proof is in Section A.3. Here I[a,b] denotes
the indicator function of the interval [a, b] (|a|, |b|may be
infinite). Our construction of the functions Jc[a,b] below
proceeds by a process similar to mollification [17], where
one smooths a function by convolving it with a narrow
bump function of unit area. The only difference in our
construction is that we convolve with the scaled Fourier
transform of a bump function, which allows us to obtain
better bounds on the high order derivatives of Jc[a,b]. We
call this slight variation “FT-mollification”, to signify
that we use the Fourier transform.

Lemma 2.5. There exist constants c′, ε0 > 0 such that
for all c > 0 and 0 < ε < ε0, and for all [a, b] ⊆ R, there
exists a function Jc[a,b] : R→ R satisfying:

i. ||(Jc[a,b])
(`)||∞ = O(c`) for all ` ≥ 0.

ii. For all x such that a, b /∈ [x− ε, x+ ε], and as long
as c > c′ε−1 log3(1/ε), |Jc[a,b](x)− I[a,b](x)| < ε.

We now prove Theorem 2.1. We defer analysis of
the required precision (and hence the required space) to
Section A.6, and here just argue correctness.
Proof (of Theorem 2.1). Consider first the following
argument that Indyk’s median estimator provides a (1±
ε)-approximation when r = Θ(1/ε2) and we use a sketch
matrix B such that the Bi,j are fully independent from
Dp. The following argument is only slightly different
from Indyk’s original argument, but is presented in such
a way that adapts well to the entries of the sketch
matrix having limited independence. Let z = Bx be
the sketch when using the fully independent matrix
B. Since we scale our final output by median(|Dp|),
we henceforth argue as if median(|Dp|) = 1 (remarks
on computing median(|Dp|) are in Section A.2). The
value 1 being the median is equivalent to the statement
E[I[−1,1](zi/||x||p)] = 1/2, since Dp is symmetric. Let
µp be the probability density function of Dp. Then by
compactness, µp takes on some minimum value ηp in the

interval [−2, 2]. Furthermore, ηp > 0 (strict inequality)
since µp > 0 everywhere (this follows since it is known
that µp is unimodal with mode zero [40], and is non-zero
for large |x| by Lemma 2.1). Then

(2.9) E
[
I[−1+ε,1−ε]

(
zi
||x||p

)]
≤ 1

2
− ηpε =

1
2
−Θ(ε)

and

(2.10) E
[
I[−1−ε,1+ε]

(
zi
||x||p

)]
≥ 1

2
+ηpε =

1
2

+Θ(ε).

Now if we let

Z =
1
r

r∑
i=1

I[−1+ε,1−ε]

(
zi
||x||p

)
and

Z ′ =
1
r

r∑
i=1

I[−1−ε,1+ε]

(
zi
||x||p

)
then E[Z] = 1/2 − Θ(ε), E[Z ′] = 1/2 + Θ(ε), and
Var[Z],Var[Z ′] ≤ 1/r = Θ(ε2). Writing r = c′/ε2,
Chebyshev’s inequality and a union bound imply Z =
1/2 − Θ(ε) and Z ′ = 1/2 + Θ(ε) with probability 7/8
for large c′. We conclude by noting median{|zi|}ri=1 =
(1± ε)||x||p when both these events occur.

We now modify the above argument to handle our
case where we use the sketch y = Ax with the Ai,j
only k-wise independent for fixed i, and the seeds
used to generate different rows of A being pairwise
independent. Note that once we established bounds on
E[Z] and E[Z ′] above, concentration of Z,Z ′ was shown
via Chebyshev’s inequality, which only required pairwise
independence of the sketch matrix rows. Thus, we need
only show that E[I[a,b](zi/||x||p)] ≈ε E[I[a,b](yi/||x||p)].
Ideally we would just apply Lemma 2.2, but we cannot
do this directly: the function I[a,b] does not have
bounded high-order derivatives. We instead argue
indirectly using the function Jc[a,b] from Lemma 2.5 with
c = O(ε−1 log3(1/ε)) . Let Zi = zi/||x||p and Yi =
yi/||x||p. We argue the following chain of inequalities:

E[I[a,b](Zi)] ≈ε E[Jc[a,b](Zi)]

≈ε E[Jc[a,b](Yi)] ≈ε E[I[a,b](Yi)].

E[I[a,b](Zi)] ≈ε E[Jc
[a,b](Zi)]: This follows since I[a,b]

and J[a,b] are within ε everywhere except for two inter-
vals of length O(ε). Since Dp is anticoncentrated (any
length-O(ε) interval contains O(ε) probability mass)
and ||I[a,b]||∞, ||Jc[a,b]||∞ = O(1), these intervals con-
tribute O(ε) to the difference.

E[Jc
[a,b](Zi)] ≈ε E[Jc

[a,b](Yi)]: Apply Lemma 2.2 with
α = O(ε−1 log3(1/ε)) and vector x/||x||p.



1. Pick two random matrices A ∈ Rr×n, A′ ∈ Rr′×n as follows for r = Θ(1/ε2) and r′ = Θ(1).
Each Ai,j is distributing according to Dp. For fixed i, the Ai,j are k-wise independent with
k = Θ(log(1/ε)/ log log(1/ε)). For i 6= i′, the seeds used to generate the {Ai,j}nj=1 and {Ai′,j}nj=1

are pairwise independent. A′ is generated similarly, but with fresh randomness, and with columns
needing only be k′-wise independent for k′ = Θ(1).

2. Maintain the vectors y = Ax and y′ = A′x throughout the stream.

3. Let y′med = median{|y′i|}r
′

i=1/median(|Dp|). Output y′med ·
“
− ln

“
1
r

Pr
i=1 cos

“
yi

y′med

”””1/p

.

Figure 2: Our log-cosine Lp estimation algorithm pseudocode, 0 < p < 2, assuming infinite precision.

E[Jc
[a,b](Yi)] ≈ε E[I[a,b](Yi)]: We argue as in the first

inequality, but now we must show anticoncentration of
the Yi. Suppose for any t ∈ R we had a nonnegative
function ft,ε : R→ R symmetric about t satisfying:

i. ||f (`)
t,ε ||∞ = O(α`) for all ` ≥ 0, with α = O(1/ε)

ii. E[ft,ε(D)] = O(ε) for D ∼ Dp

iii. ft,ε(t+ ε) = Ω(1)

iv. ft,ε(x) is strictly decreasing as |x− t| → ∞

By (i), (ii) and Lemma 2.2 we would have E[ft,ε(Yi)] ≈ε
E[ft,ε(D)] = O(ε). Then, E[ft,ε(Yi)] ≥ ft,ε(t + ε) ·
Pr[Yi ∈ [t− ε, t+ ε]] = Ω(Pr[Yi ∈ [t− ε, t+ ε]]) by (iii)
and (iv), implying anticoncentration in [t − ε, t + ε] as
desired. We exhibit such functions ft,ε in Section A.4.

�

In Section 1.1.1 we stated that our techniques could
be used to give an alternative proof to [12] that bounded
independence fools regular halfspaces. This alternative
proof is quite similar to part of the proof of Theorem 2.1,
and we give full details in Section A.5.

Now that we have established a space-optimal de-
randomization of Indyk’s algorithm, we give an alter-
native space-optimal algorithm, but with update time
only O(ε−2 log(1/ε)/ log log(1/ε)) (Figure 2).

Lemma 2.6. Let B = Θ(||x||p). Let A ∈ Rr×n and y =
Ax be as in Figure 2. Then with probability 7/8 it holds

that
∣∣∣∣( 1
r

∑r
i=1 cos

(Pn
j=1 Ai,jxj

B

))
− e−

“
||x||p
B

”p ∣∣∣∣ < ε.

Proof. Using that cos(x) = (eix + e−ix)/2 we can
calculate E[cos(B′Z)] for fixed B′ as e−|B

′|p , using the
Fourier transform of the density function of Dp. Thus,
letting B′ = ||x||p

B and applying Lemma 2.2 together
with the observation of Remark 2.1 on the vector x/B,
E[cos(yi/B)] = e−(||x||p/B)p + O(ε). Also, since cos is
bounded by 1, Var[ 1r

∑r
i=1 cos(yi/B)] ≤ 1/r. The claim

follows by Chebyshev’s inequality. �

Theorem 2.2. For all p ∈ (0, 2), the algorithm of
Figure 2 can be implemented with limited precision to
use space O(ε−2 log(mM)) and output (1± ε)||x||p with
probability at least 3/4.

Proof. As long as k′, r′ are chosen to be larger than
some constant, y′med is a constant factor approximation
to ||x||p by Theorem 2.1 with probability at least 7/8.
Conditioned on this, consider C = (

∑
i cos(yi/y′med))/r.

Note that y′med is independent of the yi since A,A′

were generated independently. Then by Lemma 2.6,
with probability at least 7/8, C is within O(ε) of
e−(||x||p/y′med)p from which a (1 + O(ε))-approximation
of ||x||p can be computed as y′med · (− ln(C))1/p. Note
this expression is in fact a (1 + O(ε))-approximation
since the function f(z) = e−|z|

p

is bounded both from
above and below by constants for z in a constant-
sized interval (in our case, z is ||x||p/y′med), and thus
e−(||x||p/y′med)p +O(ε) = (1+O(ε))e−(||x||p/y′med)p . Thus,

y′med·(− ln(C))1/p = ||x||p+O(ε)·y′med = (1+O(ε))||x||p.

Bounds on precision (and hence space) required are
in Section A.6. �

3 Lower Bound

In this section we prove our lower bound for (1 ±
ε)-multiplicative approximation of Fp for any pos-
itive real constant p bounded away from 0 in
the turnstile model. We show a lower bound of
Ω(min{N, ε−2(log(ε2mM))}). Note that if ε ≥
1/N1/2−δ for any constant δ > 0, the lower bound
becomes Ω(ε−2(log(mM)), matching our upper bound.
We also describe a folklore lower bound of Ω(log log n)
in Section A.1.2. Our lower bound holds for all ranges
of the parameters ε, n,m,M varying independently.

Our proof in part uses that Augmented-Indexing
requires linear communication in the one-way, one-
round model [32] (an alternative proof was also given
later in [4, Lemma 2]). We also use a known reduction



[25, 39] from Indexing to Gap-Hamdist. Henceforth
all communication games discussed will be one-round
and two-player, with the first player to speak named
“Alice”, and the second “Bob”. We assume that Alice
and Bob have access to public randomness.

Definition 3.1. In the Augmented-Indexing prob-
lem, Alice receives a vector x ∈ {0, 1}n, Bob receives
some i ∈ [n] as well as all xj for j > i, and Bob must
output xi. The problem Indexing is defined similarly,
except Bob receives only i ∈ [n], without receiving xj for
j > i.

Definition 3.2. In the Gap-Hamdist problem, Alice
receives x ∈ {0, 1}n and Bob receives y ∈ {0, 1}n. Bob is
promised that either ∆(x, y) ≤ n/2−

√
n ( NO instance),

or ∆(x, y) ≥ n/2+
√
n ( YES instance) and must decide

which holds. Here ∆(·, ·) denotes Hamming distance.

We also make use of the following two theorems.

Theorem 3.1. (Miltersen et al. [32, Lemma 13])
The randomized one-round, one-way communication
complexity of Augmented-Indexing with error
probability at most 1/3 is Ω(n). �

Theorem 3.2. ([25], [39, Section 4.3]) There is a
reduction from Indexing to Gap-Hamdist such that
deciding Gap-Hamdist with probability at least 11/12
implies a solution to Indexing with probability at least
2/3. Furthermore, in this reduction the parameter n
in Indexing is within a constant factor of that for the
reduced Gap-Hamdist instance. �

Theorem 3.3. (Main lower bound) For any real
constant p > 0, any one-pass streaming algorithm for
(1 ± ε)-multiplicative approximation of Fp with prob-
ability at least 11/12 in the turnstile model requires
Ω(min{N, ε−2(1 + p · log(

⌈
ε2mM

⌉
))}) bits of space.

Proof. Let q = 21/p and define k =
⌊
1/ε2

⌋
and

t = min{bN/kc ,
⌊
logq(M)

⌋
+ 1}. Given an algorithm

A providing a (1± dε/2p)-multiplicative approximation
of Fp with probability at least 11/12, where d > 0
is some small constant to be fixed later, we devise a
protocol to decide Augmented-Indexing on strings
of length kt, where the number of bits communicated
in the protocol is dominated by the space complexity of
A. Since kt = Ω(min{N, ε−2(1+p·log(

⌈
ε2mM

⌉
))}) and

2p = O(1) for constant p, the lower bound (ignoring the
ε2m term) follows. At the end of the proof, we describe
how to obtain our stated dependence on m in the lower
bound as well.

Let Alice receive x ∈ {0, 1}kt, and Bob receive
z ∈ [kt]. Alice conceptually divides x into t contiguous

blocks where the ith block bi is of size k. Bob’s index
z lies in some bi(z), and Bob receives bits xj that lie
in a block bi with i > i(z). Alice applies the Gap-
Hamdist reduction of Theorem 3.2 to each bi separately
to obtain new vectors yi each of length at most c · k for
some constant c for all 0 ≤ i < t. Alice then creates a
stream from the set of yi by, for each i and each bit (yi)j
of yi, inserting an update ((i, j),

⌊
qi
⌋
) into the stream

if (yi)j = 1. Alice processes this stream with A then
sends the state of A to Bob along with the Hamming
weight w(yi) of yi for all i. Note the size of the universe
in the stream is at most ckt = O(N) = O(n).

Now, since Bob knows the bits in bi for i > i(z)
and shares randomness with Alice, he can run the same
Gap-Hamdist reduction as Alice to obtain the yi for
i > i(z) then delete all the insertions Alice made for
these yi. Bob then performs his part of the reduction
from Indexing on strings of length k to Gap-Hamdist
within the block bi(z) to obtain a vector y(B) of length
ck such that deciding whether ∆(y(B), yi(z)) > ck/2 +√
ck or ∆(y(B), yi(z)) < ck/2−

√
ck with probability at

least 11/12 allows one to decide the Indexing instance
on block bi(z) with probability at least 2/3. Here
∆(·, ·) denotes Hamming distance. For each j such
that y(B)j = 1, Bob inserts ((i(z), j),−

⌊
qi(z)

⌋
) into the

stream being processed by A. We have so far described
all stream updates, and thus the number of updates is
at most 2ckt = O(N) = O(m). Note the pth moment
L′′ of the underlying vector of the stream now exactly
satisfies
(3.11)

L′′ =
⌊
qi(z)

⌋p
·∆(y(B), yi(z)) +

∑
i<i(z)

w(yi)
⌊
qi
⌋p
.

Setting η =
∑
i<i(z) w(yi)

⌊
qi
⌋p and rearranging terms,

∆(y(B), yi(z)) = (L′′ − η)/
⌊
qi(z)

⌋p
. Recall that in

this Gap-Hamdist instance, Bob must decide whether
∆(y(B), yi(z)) < ck/2−

√
ck or ∆(y(B), yi(z)) > ck/2 +√

ck. Bob can compute η exactly given Alice’s message.
To decide Gap-Hamdist it thus suffices to obtain a
(
√
ck/4)-additive approximation to

⌊
qi(z)

⌋−p
L′′. Note⌊

qi
⌋p = 2i · (

⌊
qi
⌋
/qi)p, and thus 2i/2p ≤

⌊
qi
⌋p ≤ 2i.

Thus,
⌊
qi(z)

⌋−p
L′′ is upper-bounded by

⌊
qi(z)

⌋−p i(z)∑
i=0

⌊
qi
⌋p·ck ≤ 2p−i(z)(2i(z)+1−1)ck ≤ 2p+1ck,

implying our desired additive approximation is guaran-
teed by obtaining a (1±ε′)-multiplicative approximation
to L′′ for ε′ = (

√
ck/4)/(4 · 2p+1ck) = 1/(2p+3

√
ck). By

choice of k, this is a (1 ± O(ε/2p))-multiplicative ap-
proximation, which we can obtain from A by setting d



to be a sufficiently small constant. Recalling that A
provides this (1 ± O(ε/2p))-approximation with prob-
ability at least 11/12, we solve Gap-Hamdist in the
block i(z) with probability at least 11/12, and thus In-
dexing in block i(z) with probability at least 2/3 by
Theorem 3.2, which is equivalent to solving the origi-
nal Augmented-Indexing instance. This implies that
the total number of bits communicated in this protocol
must be Ω(kt). Now note that the only bits communi-
cated other than the state of A are the transmissions
of w(yi) for 0 ≤ i < t. Since w(yi) ≤ k, all Hamming
weights can be communicated in O(t log(k)) = o(kt)
bits. Thus, indeed, the communication of the protocol
is dominated by the space complexity of A, implying A
uses space Ω(kt).

The above argument yields the lower bound
Ω(min{N, ε2 log(M)). We can similarly obtain the lower
bound Ω(min{N, ε2 log(

⌈
ε2m

⌉
)) by, rather than updat-

ing an item in the stream by fi =
⌊
qi
⌋

in one update,
we update the same item fi times by 1. The number of
total updates in the ith block is then at most

⌊
qi
⌋
· k,

and thus the maximum number of blocks of length k
we can give Alice to ensure that both the stream length
and number of used universe elements is at most N is
t = min{bN/kc , O(log(dm/ke))}. The proof is other-
wise identical. �

Our lower bound technique also improves lower
bounds for p = 0, Lp estimation in the strict turnstile
model (where we are promised xi ≥ 0 always), and ad-
ditive estimation of entropy. Details are in Section A.7.
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A Appendix

A.1 The additive log log n in Lp bounds Through-
out the paper, we omitted an additive log log n both in
the statement of upper and lower bounds for Lp estima-
tion. We here discuss why this term arises.

A.1.1 The upper bounds In Section 1, we
stated that stream updates (i, v) come from [n] ×
{−M, . . . ,M}, causing the change xi ← xi + v. We
note that in fact, we can assume that i comes not from
the universe [n], but rather from [U ] for U = O(m2),
at the cost of an additive O(log log n) in the space com-
plexity of any Lp estimation algorithm. We discuss why
this is the case below, using an idea of [16].

Let {i1, . . . , ir} be the indices appearing in the
stream. Picking a prime q and treating all updates
(i, v) as (i mod q, v), our Lp estimate is unaffected as
long as ij1 6= ij2 mod q for all j1 6= j2. There are at
most r2/2 differences |ij1−ij2 |, and each difference is an
integer bounded by n, thus having at most log n prime
factors. There are thus at most r2 log n prime factors
dividing some |ij1 − ij2 |. If we pick a random prime
q = Õ(r2 log n), we can ensure with constant probability
arbitrarily close to 1 (by increasing the constant in
the “big-Oh”) that no indices collide modulo q. Since
r ≤ m, we thus have q = Õ(m2 log n). We then
pick a hash function h : {0, . . . , q − 1} → [O(m2)]
at random from pairwise independent family. With
constant probability which can be made arbitrarily high
(again by increasing the constant in the “big-Oh”), the
mapping i 7→ h(i mod q) perfectly hashes the indices
appearing in the stream. Storing both h and q requires
O(log q + logm) = O(logm+ log log n) bits.

A.1.2 The lower bounds An Ω(log log n) lower
bound for moment estimation in the turnstile model
follows by a simple reduction from the communication
problem of Equality in the private coin model. The
lower bound holds for streams of length at least 2 and
arbitrary M . In Equality, Alice receives x ∈ [n], and
Bob receives y ∈ [n], and they must decide whether
x = y with probability 2/3. This problem requires
Ω(log log n) communication [29]. Given a streaming al-
gorithm A for turnstile Fp estimation for p ≥ 0 with suc-
cess probability 2/3, Alice performs the update (x,+1),
sends A’s state to Bob, and Bob performs the update
(y,−1). Either x = y, implying Fp = 0, else Fp 6= 0.
Thus, any multiplicative approximation of Fp gives a so-
lution to Equality, implying A uses Ω(log log n) space.

A.2 Approximating the median of |Dp| Indyk’s
algorithm (Figure 1) and our log-cosine algorithm (Fig-
ure 2) both require knowledge of median(|Dp|). It is

known that median(|D1|) = 1, but a closed-form ex-
pression for the median is not known for general p.

In fact, we note that a (1 ± ε)-approximation of
this quantity suffices. One method to obtain such
a quantity is the following. Let µp be the density
function of Dp, and let µ̄p be the cdf. Let x−p be
such that 5/8 < µ̄p(x−p ) < 3/4 and x+

p be such that
3/4 < µ̄p(x+

p ) < 7/8; such values can be found during
preprocessing numerically with constant precision. Let
δ̃p be a value in [µp(x+

p )/2, µp(x+
p )], which can also

be computed numerically with constant precision. Let
median(|Dp|) = xmed,p so that x−p < xmed,p < x+

p .
Then we know µp(xmed,p) > δ̃p by unimodality of
Dp with mode zero [40]. Thus, in preprocessing, by
selecting C/((εδ̃px−p )2) samples from Dp and taking the
median of the absolute value of the samples, the result
is guaranteed to be xmed,p ± εx−p = (1 ± ε)xmed,p with
arbitrarily large constant probability by increasing C,
by a Chernoff bound.

A.3 Approximating the indicator function of
an interval Throughout this section we let b : R → R
be the function

b(x) =

{
e
− x2

1−x2 for |x| < 1
0 otherwise

,

which is known to be smooth.
We let

b̂(t) =
1

2π
·
∫ ∞
−∞

b(x)e−itxdx =
1

2π
·
∫ 1

−1

b(x)e−itxdx

denote the Fourier transform of b.
We now prove a few properties of b and b̂. The fol-

lowing is standard and our desired properties may have
appeared in the literature before, but we include full
proofs since we do not know an appropriate reference.

Lemma A.1. The following upper bounds hold:

i. ||b(`)||∞ < e · 32``! ·max{`2`+2, 1} for all ` ≥ 0

ii. ||b(`)||1 ≤ 2||b(`)||∞ for all ` ≥ 0

Proof. Item (ii) follows since support(b(`)) = (−1, 1).
We now show (i). We need only consider x ∈

(−1, 1) since b(`)(x) = 0 for |x| ≥ 1. Define A1(x) =
e−1/(2−2x) and A2(x) = e−1/(2+2x) so that b(x) =
e · A1(x)A2(x). Then b(`)(x) is a sum of terms of
the form cjA

(j)
1 (x)A(`−j)

2 (x), where the sum of the
absolute values of the cj is e · 2`. Also, define B1(x) =
1/(2 − 2x) and B2(x) = 1/(2 + 2x). Then A′i(x) =
(−1)i2Ai(x)B2

i (x) and B′i(x) = (−1)i+12B2
i (x) for i ∈



{1, 2}. We claim for k ≥ 1 that

A
(k)
i (x) =

2k∑
j=k+1

djAi(x)Bji (x)

with |dj | < 4kk!. This holds for k = 1. We then have
for k ≥ 1 that

A
(k+1)
i (x) =

2k∑
j=k+1

2dj
(

(−1)iAi(x)Bj+2
i (x)

+ (−1)i+1jAi(x)Bj+1
i (x)

)
=

2k+1∑
j=k+2

2dj−1

(
(−1)iAi(x)Bj+1

i (x)

+ (−1)i+1(j − 1)Ai(x)Bji (x)
)

= (−1)i
(

2(k + 1)dk+1Ai(x)Bk+2
i (x)

+
2k+2∑
j=k+3

2Ai(x)Bji (x)(dj−2 − (j − 1)dj−1)

)

The claim then holds since

|2(k + 1)dk+1| < 2 · 4k(k + 1)! < 4k+1(k + 1)!

and

|2(dj−2 − (j − 1)dj−1)| < |2(4kk! + (2k + 1)4kk!)|
≤ 2(2k + 2)4kk! = 4k+1(k + 1)!.

By definition of the Ai and Bi, for x ∈ (−1, 1):

|Ai(x)Bji (x)| ≤ sup
y>0

yje−y < jj .

The final inequality follows since j is the sole positive
root of the derivative of yje−y. Thus for k ≥ 1,

sup
x∈(−1,1)

|A(k)
i (x)| < 4kk!(2k)2kk = k!(4k)2kk.

Thus for all 1 ≤ j ≤ `− 1,

|A(j)
1 (x)A(`−j)

2 (x)| < j!(4j)2jj · (`− j)!
× (4(`− j))2(`−j)(`− j)

≤ `!(4`)2``2.

The above inequality is also true for j ∈ {0, `} since
supx∈(−1,1) |Ai(x)| = e−1/4 < 1, and thus

||b(`)||∞ < (e · 2`) · `!(4`)2``2 = e · 32``! · `2`+2

for ` ≥ 1. The inequality holds for ` = 0 by inspection
since ||b||∞ = 1. �

Lemma A.2. For arbitrary `, n ≥ 0 and t ∈ R, t 6= 0,

|b̂(`)(t)| < (|t|/64)−n(n+1)2n+3·n!· `!
([[`− n]])!

· 1
[[`− n]] + 1

where [[x]] denotes max{0, x}.

Proof. We can write

b̂(`)(t) =
i`−nt−n

2π
·
∫ ∞
−∞

(
∂n

∂yn
y`b(y)

)
(x)e−ixtdx.

For n ≤ `, a straightforward induction shows

(A.1)
(
∂n

∂yn
y`b(y)

)
(x) =

n∑
k=0

ck,n,`x
`−n+kb(k)(x)

with

ck,n,` =
`!

(`− n+ k)!

(
n

k

)
.

In the case n > `, the summation of Eq. (A.1) begins
at k = n − `, and each ck,n,` is upper bounded by the
above. Since b(k) is supported on [−1, 1] for all k ≥ 0,∣∣∣b̂(`)(t)∣∣∣ =

|t|−n

2π
·
∣∣∣∣∫ 1

−1

(
∂n

∂yn
y`b(y)

)
(x)dx

∣∣∣∣
≤ |t|−n

2π
·

n∑
k=[[n−`]]

(
`!

(`− n+ k)!

(
n

k

)
||b(k)||∞

×
∫ 1

−1

|x|`−n+kdx

)

< |t|−n
n∑

k=[[n−`]]

(
`!

(`− n+ k)!

(
n

k

)
32kk!

×max{k2k+2, 1} · 1
`− n+ k + 1

)
≤ (|t|/64)−n(n+ 1)2n+3 · n!

× `!
([[`− n]])!

· 1
[[`− n]] + 1

�

Lemma A.3. For all ` ≥ 0, ||b̂(`)||1 = O(1).

Proof. n = 0 in Lemma A.2 gives ||b̂(`)||∞ < 1/(`+ 1),
while n = 2 gives |b(`)(t)| = O((`+ 1)/t2). Thus,

||b̂(`)||1 =
∫ ∞
−∞
|b̂(`)(t)|dt

=
∫ `+1

−`+1

|b̂(`)(t)|dt+ 2
∫ ∞
`+1

|b̂(`)(t)|dt

< 2 + 2
∫ ∞
`+1

O((`+ 1)/t2)

= O(1)
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Figure 3: Approximate indicator functions of the inter-
val [−1, 1]; Jc[−1,1] for c = 9, 17.

�

We are now ready to prove the main lemma of this
section. We construct good smooth approximations of
indicator functions with small high-order derivatives,
using FT-mollification (see Figure 3).
Proof (of Lemma 2.5). For a function f let fc denote
the function fc(x) = c · f(cx). Define

Jc[a,b](x) = (b̂c ∗ I[a,b])(x) =
∫ c·(x−a)

c·(x−b)
b̂(t)dt.

To show (i),

|J (`)
[a,b](x)| = |(b̂(`)c ∗ I[a,b])(x)| = c` · |((b̂(`))c ∗ I[a,b])(x)|

≤ c` · ||b̂(`)||1 = O(c`)

with the last equality holding by Lemma A.3.
Now we show (ii). Suppose x /∈ [a− ε, b+ ε]. Then

|Jc[a,b](x)| ≤
∫ ∞
cε

|b̂(t)|dt.

We may assume without loss of generality that 1/ε is a
power of 2 so that log(1/ε) is integral. Then applying
Lemma A.2 with ` = 0 and n = log(1/ε), and assuming
c > 1024n3/ε,∫ ∞

cε

|b̂(t)|dt ≤ 64n · (n+ 1)2n+3 · n! ·
∫ ∞
cε

t−ndt

≤ 64n · (2n)3n+3 · (cε)−n+1(A.2)
= 8 · n3 · cε · (512n3/(cε))n

= O(n6/2n)
< ε/2

Now consider the case x ∈ [a+ ε, b− ε]. Note∫ ∞
−∞

b̂(t)dt = b(0) = 1

We then have

Jc[a,b](x) =
∫ c·(x−a)

c·(x−b)
b̂(t)dt

≥
∫ ∞
−∞

b̂(t)dt−

∣∣∣∣∣
∫ c·(x−b)

−∞
b̂(t)dt

−
∫ ∞
c·(x−a)

b̂(t)dt

∣∣∣∣∣
≥ 1− 2

∫ ∞
cε

|b̂(t)|dt

> 1− ε

with the final inequality holding by Eq. (A.2). It can
similarly be shown that Jc[a,b](x) < 1 + ε by flipping the
sign of the second summand, and reversing the direction
of inequality, in the second inequality. �

Remark A.1. The proof of Lemma 2.5 required c =
O(ε−1 log3(1/ε)) to satisfy (ii) in the statement of the
lemma, with the constant in the big-Oh being rather
large. The proof reveals that the rate of decay of b̂ is
exactly what determined the factor multiplying 1/ε in c:
here O(log3(1/ε)). Though in fact, for our same exact b̂,
Johnson [27] showed that |b̂(t)| = O(|t|−3/4e−

√
|t|), with

the constant in the big-Oh being fairly small. Plugging
Johnson’s bound into our proof then shows that c =
O(ε−1 log2(1/ε)) actually suffices. In fact, [27] also
implies that for all δ > 0, if one considers the bump
function bα(x) = (b(x)/e)α for sufficiently large α =
α(δ), it holds that |b̂α(t)| = O(e−|t|

1−δ
). An alternate

construction which convolves with (b̂α)c for large α then
only requires c = ε−1 log1+o(1)(1/ε).

A.4 Existence of a good function for showing
anticoncentration Part of the proof of Theorem 2.1
required us to exhibit, for any t ∈ R and 0 < ε < ε0 for
some constant ε0 > 0, a nonnegative function ft,ε : R→
R symmetric about t satisfying the following properties:

i. ||f (`)
t,ε ||∞ = O(α`) for all ` ≥ 0, with α = O(1/ε)

ii. E[ft,ε(D)] = O(ε) for D ∼ Dp

iii. ft,ε(t+ ε) = Ω(1)

iv. ft,ε(x) is strictly decreasing as |x− t| → ∞

We first prove the following useful lemma.

Lemma A.4. Let f : C → C be holomorphic on the
complex plane satisfying |f(z)| = eO(1+|=(z)|) for all
z ∈ C, where =(z) denotes the imaginary part of z.
Then, for any x ∈ R, |f (`)(x)| = eO(1+`).



Proof. Let C be the circle of radius ` centered at x in
the complex plane. By Cauchy’s integral formula,

|f (`)(x)| =
∣∣∣∣ `!2πi

∮
C

f(z)
(z − x)`+1

dz

∣∣∣∣
≤ `!

2π

∫ 2π

0

∣∣∣∣eO(1+|`·sin(t)|)

(`eit)`+1
`eitdt

∣∣∣∣
≤ `!eO(1+`)

2π``

∫ 2π

0

1
|ei`t|

dt

≤ eO(1+`)

2π

∫ 2π

0

dt

= eO(1+`).

�

Now, consider the function

f(x) = −
∫ x

−∞

sin4(y)
y3

dy = −
∫ x

−∞
sinc3(y) sin(y)dy.

Then on R, f is even since it is the integral of an
odd function, and it is nonnegative by construction.
Now consider x ∈ C. The integrand is the product
of holomorphic functions and is thus holomorphic, so
we may apply Cauchy’s integral theorem to choose
a contour to evaluate the integral. We choose the
piecewise linear contour which goes from −∞ to <(x)
along R, followed by the line from <(x) to x, where
<(x) denotes the real part of x. The former integral
is O(1). The latter integral is pointwise bounded
in magnitude by eO(1+|=(x)|), which can be seen by
expanding sin(y) = (eiy − e−iy)/2, and thus in total is
bounded by |=(x)| · eO(1+|=(x)|) = eO(1+|=(x)|). It thus
follows that ||f (`)||∞ = eO(1+`) on R by Lemma A.4.

Now define f0,ε : R → R by f0,ε(x) = f(x/ε) (the
general construction is given by setting ft,ε = f0,ε(x−t),
then applying a similar argument as to what follows).
This function is nonnegative and symmetric about 0
by the above discussion, and has the desired derivative
bounds of (i) by the chain rule and bounds on ||f (`)||∞.
Let µp be the density function of Dp, which is bounded
by some absolute constant Cp on R. Note f0,ε(x) =
O(ε2/x2), and recall Dp is anticoncentrated. Item (ii)
is then satisfied since

E[f0,ε(D)] ≤ f(0) ·Pr[|D| ≤ ε]

+ 2Cp
∫ ∞
ε

O(ε2/x2)dx = O(ε).

Item (iii) follows since f0,ε(ε) = f(1), and (iv) follows
by construction.

A.5 Fooling regular halfspaces For a ∈ Rn with
||a||2 = 1 and θ ∈ R, let fa,θ(x) = sgn(〈a, x〉 − θ)

for x ∈ {−1, 1}n. Diakonikolas et al. showed that
Ex[fa,θ(x)] is preserved to within O(ε) even if the xi are
only k(ε)-wise independent for k(ε) = O(ε−2 log2(1/ε)).
They first provided a reduction to the regular case,
where |ai| < ε for all i ∈ [n], then resolved the regular
case. We give an alternative proof that ε−2 log2+o(1)-
wise independence fools regular halfspaces, which is an
adaptation of our proof of Theorem 2.1.

Let x = (x1, . . . , xn) have fully independent entries
and y = (y1, . . . , yn) have k-wise independent entries
in {−1, 1} for k even. Let X = 〈a, x〉 and Y = 〈a, y〉.
It suffices to show E[I[θ,∞)(X)] ≈ε E[I[θ,∞)(Y )] since
fa,θ(z) = 2 · I[θ,∞)(〈a, z〉)− 1. Similarly to the proof of
Theorem 2.1, we show this by proving

E[I[θ,∞)(X)] ≈ε E[Jc[θ,∞)(X)]

≈ε E[Jc[θ,∞)(Y )] ≈ε E[I[θ,∞)(Y )]

with Jc[θ,∞) as in Lemma 2.5, c = O(ε−1 log3(1/ε)).

E[I[θ,∞)(X)] ≈ε E[Jc
[θ,∞)(X)]: This follows since (a)

I[θ,∞) and J[θ,∞) are within ε everywhere except for two
intervals of length O(ε), and (b) the random variable X
is anticoncentrated (any length-O(ε) interval contains
O(ε) probability mass) by the Berry-Esséen theorem,
by regularity; since ||I[θ,∞)||∞, ||Jc[θ,∞)||∞ = O(1), these
intervals contribute O(ε) to the difference.

E[Jc
[θ,∞)(X)] ≈ε E[Jc

[θ,∞)(Y)]: Unlike in the case of
Lemma 2.2, we can directly apply Taylor’s theorem
since X,Y have finite moments. By Taylor’s theorem,

Jc[θ,∞)(X) = pk−1(X)±
||(Jc[θ,∞)])

(k)||∞Xk

k!
,

where degree(pk−1) = k − 1. Do similarly for Y . Then

(A.3) |E[Jc[θ,∞)(X)]−E[Jc[θ,∞)(Y )]| ≤ O(ck) ·E[Xk]
k!

since ||(Jc[θ,∞))
(k)||∞ = O(ck) and E[Xk] = E[Y k]. We

have E[Xk] ≤ kk/2 by Khintchine’s inequality [20],
and k! = kk/2O(k). Thus, setting k = Ω(c2) makes
Eq. (A.3) at most ε. Our setting of c causes k to be
O(ε−2 log6(1/ε)), but as discussed in Remark A.1 of
Section A.3, this can be improved to ε−2 log2+o(1)(1/ε).

E[Jc
[θ,∞)(Y)] ≈ε E[I[θ,∞)(Y)]: Just as in the proof of

Theorem 2.1, we argue as in the first inequality, but we
now must show anticoncentration of Y . This is done
exactly as in the proof of Theorem 2.1, using the same
function ft,ε of Section A.4.

A.6 Lp algorithm precision issues In this section,
we deal with the precision issues mentioned in the proofs



of Theorem 2.1 and Theorem 2.2 in Section 2. Since
the argument is nearly identical in both algorithms, we
focus only that of (Figure 2) discussed in Theorem 2.2.

We deal with rounding errors first. We will pick
some number δ = Θ(εm−1). We round each Ai,j , A′i,j to
the nearest multiple of δ. This means that we only need
to store the yi, y′i to a precision of δ. This does produce
an error in these values of size at most ||x||1δ ≤ |i : xi 6=
0| · max(|xi|) · δ ≤ m||x||pδ = Θ(ε||x||p). In this case,
y′med will differ by at most an additive ε||x||p, and thus
still be within a constant factor of ||x||p with 7/8 proba-
bility. Also, C = (

∑
i cos(yi/y′med))/r will be calculated

with an additive error of O(ε) (which is a multiplicative
error of 1 + O(ε) since C = Θ(1)) since (

∑
i cos((yi +

O(ε||x||p))/y′med))/r = (
∑
i(cos(yi/y′med) +O(ε))/r.

Next we need to determine how to sample from
these continuous distributions. It was shown by [9], and
also used in [23], that a p-stable random variable can be
generated by taking θ uniform in [−π/2, π/2], r uniform
in [0, 1] and letting

X = f(r, θ) =
sin(pθ)

cos1/p(θ)
·
(

cos(θ(1− p))
log(1/r)

)(1−p)/p

.

We would like to know how much of an error is intro-
duced by using values of r and θ only accurate to within
δ′. This error is at most δ′ times the derivative of f .
This derivative is not large except when θ or (1 − p)θ
is close to ±π/2, or when r is close to 0 or 1. Since
we only ever need mr different values of Ai,j (and even
fewer values for A′), we can assume that with reason-
able probability we never get an r or θ closer to these
values than O(m−1ε2). In such a case the derivative
will be bounded by (mε−1)O(1). Therefore, if we choose
r and θ with a precision of (m−1ε)O(1), we can get the
value of X with introducing an error of only δ.

Lastly, we need to consider memory requirements.
We consider only the memory requirements for stor-
ing A, since that for A′ is even less. Our rows must
be from a 2-independent family containing O(ε−2) k-
independent families of n random variables. Each ran-
dom variable requires O(log(mε−1)) bits. The amount
of space needed to pick out an element of this fam-
ily is O(k(log(n) + log(mε−1))) = O(k log(nm/ε)) =
O(k log(nm)) bits (recall ε ≥ 1/

√
m). The dependence

here on n can be eliminated using the observation of
Section A.1.1, with an additive O(log log n) cost. We
also need to store the yi to a precision of δ. Since
there are only mr values of Ai,j we ever consider in the
stream, with large constant probability, none of them
is bigger than a polynomial in mr. If this is the case,
the maximum value of any yi is at most (mMε−1)O(1).
Hence each of the O(1/ε2) values yi can be stored in
O(log(mMε−1)) = O(log(mM)) bits.

A.7 Further lower bounds

Observation A.1. For vectors u, v of equal length with
entries in {0, r}, let ∆(u, v) = |{i : ui 6= vi}| denote
their Hamming distance. Let w(z) = |{i : zi 6= 0}|
denote the weight of z. Then for any p ≥ 0,

rp(2p− 2)∆(u, v) = (2r)pw(u) + (2r)pw(v)− 2||u+ v||pp.

We remind the reader that in strict turnstile
streams, each frequency xi is promised to always be
nonnegative. We now show the following.

Theorem A.1. For any real constant p > 0, any
one-pass streaming algorithm for (1 ± ε)-multiplicative
approximation of Fp with probability at least 11/12
in the strict turnstile model requires Ω(min{N, |p −
1|2ε−2(log(ε2mM/|p− 1|2))}) bits of space.

Proof (Sketch). The proof is very similar to that
of Theorem 3.3, so we only explain the differences.
The main difference is the following. In the proof of
Theorem 3.3, Bob inserted item (i(z), j) into the stream
with frequency −

⌊
qi(z)

⌋
for each j satisfying y(B)j = 1.

Doing this may not yield a strict turnstile stream, since
(i(z), j) may never have received a positive update from
Alice. We instead have Bob insert (i(z), j) with positive
frequency

⌊
qi(z)

⌋
.

Now, after all updates have been inserted into the
stream, Observation A.1 implies that the pth frequency
moment of the stream is exactly

L′′ =
(2
⌊
qi(z)

⌋
)p

2
w(yi(z)) +

(2
⌊
qi(z)

⌋
)p

2
w(y(B))

−
⌊
qi(z)

⌋p
(2p − 2)
2

∆(yi(z), y(B))

+
∑
i<i(z)

w(yi)
⌊
qi
⌋p
.

Setting η =
∑
i<i(z) w(yi)

⌊
qi
⌋p and rearranging terms,

∆(yi(z), y(B)) =
2p−1

2p−1 − 1
w(yi(z)) +

2p−1

2p−1 − 1
w(y(B))

+

⌊
qi(z)

⌋−p
(η − L′′)

2p−1 − 1
.

Bob knows η, w(yi(z)), and w(y(B)) exactly. To
decide Gap-Hamdist for vectors yi(z), y(B), it thus
suffices to obtain a ((2p−1 − 1)/(4

√
ck))-additive ap-

proximation to
⌊
qi(z)

⌋−p
L′′. Since 2−i(z)L′′ is upper-

bounded in absolute value by (1 + 2p)ck, our desired
additive approximation is guaranteed by obtaining a
(1±((2p−1−1)

√
ck/(4·(1+2p))))-multiplicative approxi-

mation to L′′. Since p 6= 1 is a constant, |2x−1| = Θ(|x|)



as |x| → 0, and k = Θ(1/ε2), this is a (1±O(|p− 1|ε))-
multiplicative approximation. To conclude, a (1±O(|p−
1|ε))-multiplicative approximation to Fp with probabil-
ity 11/12 gives a protocol for Augmented-Indexing
with success probability 2/3, with Alice having a string
of length kt for k, t as in the proof of Theorem 3.3. The
theorem follows. �

The lower bounds of Theorem 3.3 and Theorem A.1
fail to give any improved lower bound over the previ-
ously known Ω(min{N, 1/ε2}) lower bound for p near
(and including) 0. The reason is that we gave items in
block j a frequency of roughly 2j/p, so that contribu-
tions to Fp increase geometrically as block ID increases.
This fails for, say, p = 0, since in this case increasing
frequency does not increase contribution to F0 at all.
We fix this issue by, rather than giving items in large
blocks a large frequency, instead blow up the universe
size. Specifically, we use a proof identical to that of
Theorem A.1, but rather than give an index i in block
j frequency roughly 2j/p, we instead create 2j indices
(i, 1), . . . , (i, 2j) and give them each a frequency of 1.
The setting of t, the number of blocks, can then be at
most O(log(ε2N)) since n,m ≤ 2ε−2

∑t−1
j=0 2j , which we

require to be at most N . We thus have:

Theorem A.2. For any real constant p ≥ 0, one-
pass (1 ± ε)-multiplicative approximation of Fp with
probability at least 11/12 in the strict turnstile model
requires Ω(|p− 1|2ε−2 log(ε2N/|p− 1|2)) bits of space.

The decay of our lower bounds in the strict turn-
stile model as p → 1 is necessary since Li gave an al-
gorithm in this model whose dependence on ε becomes
subquadratic as p → 1 [31]. Furthermore, when p = 1
there is a simple, deterministic O(log(mM))-space al-
gorithm for computing F1: maintain a counter.

Our technique also improves the known lower bound
for additively estimating the entropy of a stream in the
strict turnstile model.3 The proof combines ideas of [7]
with our technique of embedding geometrically-growing
hard instances. By entropy of the stream, we mean
the empirical probability distribution on [n] obtained
by setting pi = xi/||x||1.

Theorem A.3. Any algorithm for ε-additive approxi-
mation of H, the entropy of a stream, in the strict turn-
stile model with probability at least 11/12 requires space
Ω(ε−2 log(N)/ log(1/ε)).

Proof. We reduce from Augmented-Indexing, as
in Theorem 3.3. Alice receives a string of length

3The previous proof of [7] though has the advantage of even

holding in the weakest insertion-only model, i.e. no negative
frequency updates.

s = logN/(2ε2 log(1/ε)), and Bob receives an index
z ∈ [s]. Alice conceptually divides her input into
b = ε2s blocks, each of size 1/ε2, and reduces each
block using the Indexing→Gap-Hamdist reduction of
Theorem 3.2 to obtain b Gap-Hamdist instances with
strings y1, . . . , yb, each of length ` = Θ(1/ε2). For each
1 ≤ i ≤ b, and 1 ≤ j ≤ ` Alice inserts universe elements
(i, j, 1, (yi)j), . . . , (i, j, ε−2i, (yi)j) into the stream and
sends the state of a streaming algorithm to Bob.

Bob identifies the block i(z) in which z lands
and deletes all stream elements associated with
blocks with index i > i(z). He then does
his part in the Indexing→Gap-Hamdist reduc-
tion to obtain a vector y(Bob) of length `. For
all 1 ≤ j ≤ `, he inserts the universe ele-
ments (i(z), j, 1, y(Bob)j), . . . , (i(z), j, ε−2i(z), y(Bob)j)
into the stream.

The number of stream tokens from block indices i <
i(z) is A = ε−2

∑i(z)−1
i=0 ε−2i = Θ(ε−2i(z)). The number

of tokens in block i(z) from Alice and Bob combined is
2ε−(2i(z)+2). Define B = ε−2i(z) and C = ε−2. The L1

weight of the stream is R = A + 2BC. Let ∆ denote
the Hamming distance between yi(z) and y(Bob) and H
denote the entropy of the stream.

We have:

H =
A

R
log(R) +

2B(C −∆)
R

log
(
R

2

)
+

2B∆
R

log(R)

=
A

R
log(R) +

2BC
R

log(R)− 2BC
R

+
2B∆
R

Rearranging terms gives

(A.4) ∆ =
HR

2B
+ C − C log(R)− A

2B
log(R)

To decide the Gap-Hamdist instance, we must de-
cide whether ∆ < 1/2ε2 − 1/ε or ∆ > 1/2ε2 + 1/ε. By
Eq. (A.4) and the fact that Bob knows A, B, C, and
R, it suffices to obtain a 1/ε-additive approximation to
HR/(2B) to accomplish this goal. In other words, we
need a 2B/(εR)-additive approximation to H. Since
B/R = Θ(ε2), it suffices to obtain an additive Θ(ε)-
approximation to H. Let A be a streaming algorithm
which can provide an additive Θ(ε)-approximation with
probability at least 11/12. Recalling that correctly
deciding the Gap-Hamdist instance with probabil-
ity 11/12 allows one to correctly decide the original
Augmented-Indexing instance with probability 2/3
by Theorem 3.2, and given Theorem 3.1, A must use
at least log(N)/(ε2 log(1/ε)) bits of space. As required,
the length of the vector being updated in the stream is
at most

∑s
i=1 ε

−2i = O(N) = O(n), and the length of
the stream is exactly twice the vector length, and thus
O(N) = O(m). �


