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Abstract

We give two different proofs that use the subspace embedding guarantee in a black box way to
show that one can achieve the spectral norm guarantee for approximate matrix multiplication
with a dimensionality-reducing map that has m = O(r̃/ε2) rows. Here r̃ is the maximum
stable rank, i.e. the squared ratio of Frobenius and operator norms, of the two matrices being
multiplied. This is a strict quantitative improvement over previous work of [MZ11, KVZ14], and
is also optimal for any oblivious dimensionality-reducing map. Furthermore, due to the black box
reliance on the subspace embedding property in our proofs, our theorem can be applied to a much
more general class of sketching matrices than what was known before, in addition to achieving
better bounds. For example, one can apply our theorem to efficient subspace embeddings such
as the Subsampled Randomized Hadamard Transform or sparse subspace embeddings, or even
with subspace embedding constructions that may be developed in the future (although for some
of these constructions we lose logarithmic factors, since logarithmic factors are lost in previous
work even just to achieve the simpler subspace embedding property, sometimes necessarily so).

Our main theorem, via connections with spectral error matrix multiplication proven in pre-
vious work, implies quantitative improvements for approximate least squares regression and low
rank approximation. We furthermore give quantitative improvements to the connections proven
in previous work to achieve even better bounds. Our main result has also already been applied to
improve dimensionality reduction guarantees for k-means clustering [CEM+15], and also implies
new results for dimensionality reduction applied to nonparametric regression [YPW15].

We also separately point out that the proof of the “BSS” deterministic row-sampling result
of [BSS12] can be modified to show that for any matrices A,B of stable rank at most r̃, one
can achieve the spectral norm guarantee for approximate matrix multiplication of ATB using a
deterministic sampling matrix with O(r̃/ε2) non-zero entries which can be found in polynomial
time. The original result of [BSS12] was for rank instead of stable rank. Our observation leads
to a stronger version of a main theorem of [KMST10].

1 Introduction

A recent line of research has utilized randomized dimensionality reduction techniques to speed up
solutions to linear algebra problems, with applications in machine learning, statistics, optimization,
and several other domains; see the recent monographs [HMT11, Mah11, Woo14] for more details.
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In our work here, we give new spectral norm guarantees for approximate matrix multiplication,
and we show applications of these guarantees to speeding up standard algorithms for generalized
regression and low-rank approximation problems, and we also describe applications of our results
to k-means clustering (discovered in [CEM+15]) and nonparametric regression [YPW15].

In approximate matrix multiplication we are given A,B each with a large number of rows n,
and the goal is to compute some matrix C such that ‖C − ATB‖X is “small”, for some matrix
norm ‖ · ‖X . Furthermore, we would like to compute C much faster than the usual time required
to actually compute the matrix product ATB.

Work on randomized methods for approximate matrix multiplication began with [DKM06],
which focused on ‖ · ‖X = ‖ · ‖F , i.e., Frobenius norm error. They showed that by picking an
appropriate sampling matrix Π ∈ Rm×n, one obtains

‖(ΠA)T (ΠB)−ATB‖F ≤ ε‖A‖F ‖B‖F (1)

with good probability, if m = Ω(1/ε2). By a sampling matrix, we mean the rows of Π are indepen-
dent, and each row is all zero except for a 1 in a random location according to some appropriate
(non-uniform) distribution. If A ∈ Rn×d and B ∈ Rn×p, note that (ΠA)T (ΠB) can be computed
in O(mdp) time once ΠA and ΠB are formed, as opposed to the straightforward O(ndp) time
algorithm to compute ATB.

The Frobenius norm error guarantee of Eq. (1) was also later achieved in [Sar06, Lemma 6] via
a different approach, with some later optimizations to the parameters in [KN14, Theorem 6.2]. The
approach of Sarlós was not via sampling, but rather to use a matrix Π drawn from a distribution
satisfying an “oblivious Johnson-Lindenstrauss (JL) guarantee”, i.e. a distribution D over Rm×n
satisfying the following condition for some ε, δ ∈ (0, 1/2):

∀x ∈ Rn, P
Π∼D

(
|‖Πx‖22 − ‖x‖22| > ε‖x‖22

)
< δ. (2)

Such a matrix Π can be taken with m = O(ε−2 log(1/δ)) [JL84]. Furthermore, one can take Π to
be a Fast JL transform [AC09] (or any of the follow-up improvements [AL13, KW11, NPW14]) or
a sparse JL transform [DKS10, KN14] to speed up the computation of ΠA and ΠB. One could also
use the Thorup-Zhang sketch [TZ12] combined with a certain technique of [LBKW14] (see [Woo14,
Theorem 2.10] for details) to efficiently boost success probability.

Other than Frobenius norm error, the main other type of error guarantee investigated in previous
work is spectral error. That is, we would like ‖C−ATB‖ to be small, where ‖M‖ denotes the largest
singular value of M . If one is interested in applying ATB to some set of input vectors then this type
of error is the most meaningful, since ‖C − ATB‖ being small is equivalent to ‖Cx‖ ≈ ‖ATBx‖
for any x. The first work along these lines was again by [DKM06], who gave a procedure based on
entry-wise sampling of the entries of A and B.

Then [Sar06], combined with a quantitative improvement in [CW13], showed that one can
take a Π drawn from an oblivious JL distribution with δ = 2−Θ(r) where r(·) denotes rank and
r = r(A) + r(B). In this case Π has m = O((r + log(1/δ))/ε2), and with probability at least 1− δ
with Π drawn according to D,

‖(ΠA)T (ΠB)−ATB‖ ≤ ε‖A‖‖B‖. (3)

As we shall see shortly via a very simple lemma (Lemma 1), a sufficient deterministic condition
implying Eq. (3) is that Π is an O(ε)-subspace embedding for the r-dimensional subspace spanned
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by the columns of A and B. The notion of a subspace embedding was introduced by Sarlós, and we
say Π is an ε-subspace embedding for the column space of some U ∈ Rn×r, UTU = I, if Π satisfies
Eq. (3) with A = B = U . This is equivalent to ∀x ∈ Rr, (1− ε)‖x‖22 ≤ ‖ΠUx‖22 ≤ (1 + ε)‖x‖22.

Fast subspace embeddings Π, i.e., such that the products ΠA and ΠB can be computed quickly,
are known using variants on the Fast JL transform such as the SRHT [Sar06, Tro11, LDFU13]
(also see a slightly improved analysis of the SRHT over previous works in Section A.2) or via
sparse subspace embeddings [CW13, MM13, NN13, LMP13, CLM+15]. In most applications it is
important to have a fast subspace embedding to shrink the time it takes to transform the input
data to a lower-dimensional form before being processed. The SRHT is a construction of a Π such
that ΠA can be computed in time O(nd log n) (see Section A.2 for details of the construction).
The sparse subspace embedding constructions have some parameter m rows and exactly s non-zero
entries per column, so that ΠA can be computed in time s ·nnz(A), where nnz(·) is the number of
non-zero entries, and there is a tradeoff in the upper bounds between m and s.

One issue addressed by the work of [MZ11] is that of robustness. As stated above, achieving
the guarantee of Eq. (3) requires Π to be a subspace embedding for an r-dimensional subspace.
However, consider the case when A (and similarly for B) is of high rank but can be expressed as
the sum of a low-rank matrix plus high-rank noise of small magnitude, i.e., A = Ã + EA for Ã a
matrix of rank r(Ã)� r(A), and where ‖EA‖ is very small but EA has high (even full) rank. One
would hope that small noise could be ignored, but standard results require Π to have a number m
of rows at least as large as the rank of A,B, regardless of how small the magnitude of the noise is.
Another case of interest (as we will see in Section 3) is when A and B are each of high rank, but
their singular values decay at some appropriate rate.

The work [MZ11] remedied this by considering the stable ranks r̃(A), r̃(B) of A and B. Define
r̃(A) = ‖A‖2F /‖A‖2. Note r̃(A) ≤ r(A) always, but can be much less if A has a small tail of singular
values. Let r̃ denote r̃(A)+ r̃(B). Among other results, [MZ11] showed that to achieve Eq. (3) with
good probability, one can take Π to be a random (scaled) sign matrix with either m = Ω(r̃/ε4) or
m = Ω(r̃ log(d+ p)/ε2) rows. As noted in follow-up work [KVZ14], both the 1/ε4 dependence and
the log(d+ p) factor are undesirable. In their data-driven low dimensional embedding application,
they wanted a dimension independent of the original dimensions, which are assumed much larger
than the stable rank, and also wanted lower dependence on 1/ε. To this end, [KVZ14] defined the
nuclear rank as ñr(A) = ‖A‖∗/‖A‖ and showed m = Ω(ñr/ε2) rows suffice for ñr = ñr(A)+ ñr(B).
Here ‖A‖∗ is the nuclear norm, i.e., sum of singular values of A. Since ‖A‖2F is the sum of squared
singular values, it is straightforward to see that ñr(A) ≥ r̃(A) always. Thus there is a tradeoff: the
stable rank guarantee is worsened to nuclear rank, but dependence on 1/ε is improved to quadratic.

In our work, we show that the switch to the weaker nuclear rank guarantee is unnecessary.
In particular, we show that the quadratic dependence on 1/ε is true even with stable rank. This
answers the main open question of [MZ11, KVZ14].

Our main contribution: We give two different proofs using the subspace embedding guarantee
in a black box way to show one can achieve Eq. (3) with Π having m = O(r̃/ε2) rows. Due to
the black box nature of our proofs, Π can be drawn from any subspace embedding family. This
is an improvement to [MZ11, KVZ14] not only quantitatively in terms of m, but also in terms of
the general class of Π it applies to. That is, not only does it suffice to use a random sign matrix
with Ω(r̃/ε2) rows, but in fact one can apply our theorem with more efficient subspace embeddings
such as the SRHT or sparse subspace embeddings (albeit with logarithmic factor losses in r̃, since
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those losses are incurred in current proofs even for the weaker subspace embedding guarantee, and
a logarithmic factor loss is necessary for the SRHT [Tro11]), or even with subspace embedding
constructions that may be developed in the future. Our bound of m = O(r̃/ε2) is optimal up to
a constant factor for any oblivious dimensionality reducing map Π, as can be seen from the lower
bound in [NN14], which provides lower bounds in terms of rank, but for the matrices in the hard
distribution in that paper, their rank is equal to their stable rank.

We also point out that the proof of the main result of [BSS12] can be modified to show that
given any A,B each with n rows and of stable rank at most r̃, and given any ε ∈ (0, 1/2), there
exists a diagonal matrix Π ∈ Rn×n with O(r̃/ε2) non-zero entries, and that can be computed by a
deterministic polynomial time algorithm, achieving Eq. (3). The original work of [BSS12] proved
this theorem but with the r̃ term replaced by the maximum rank of A,B ([BSS12] stated their
result for the case A = B, but the general case of potentially unequal matrices reduces to this case;
see Section 4). Our observation also turns out to yield a stronger form of [KMST10, Theorem 3.3].

Aside from approximate matrix multiplication (and the special case of subspace embeddings)
being interesting in its own right, it is also applicable to several other problems, including k-means
clustering [BZMD15, CEM+15], nonparametric regression [YPW15], linear least squares regression
and low-rank approximation [Sar06], approximating leverage scores [DMMW12], and several other
problems (see [Woo14] for a recent summary). To state some of our applications in a more natural
way, we rephrase our main result to say that we achieve the error guarantee

‖(ΠA)T (ΠB)−ATB‖ ≤ ε

√(
‖A‖2 +

‖A‖2F
k

)(
‖B‖2 +

‖B‖2F
k

)
. (4)

for an arbitrary k ≥ 1, and we do so by using subspace embeddings for O(k)-dimensional subspaces
in a black box way (see Section 2). Note that our previously stated main contribution is equivalent,
since one could set k = r̃(A) + r̃(B) to arrive at the conclusion that subspace embeddings for
O(r̃)-dimensional subspaces yield the guarantee in Eq. (3). Alternatively one could obtain Eq. (4)
guarantee via Eq. (3) with error parameter ε′ = Θ(ε ·min{1,

√
(r̃(A) · r̃(B))/k}). Henceforth, we

use the following definition.

Definition 1. For conforming matrices AT , B, we say Π satisfies the (k, ε)-approximate spectral
norm matrix multiplication property ((k, ε)-AMM) for A,B if Eq. (4) holds.

After making certain quantitative improvements to some of the connections between approxi-
mate matrix multiplication and applications, and combining them with our main result, in Section 3
we obtain the following new results.

1. Generalized regression: Given A ∈ Rn×d and B ∈ Rn×p, consider the problem of comput-
ing X∗ = argminX∈Rd×p ‖AX −B‖. It is standard that X∗ = (ATA)+ATB where (·)+ is the
Moore-Penrose pseudoinverse. The bottleneck here is computing ATA, taking O(nd2) time.
A popular approach is to instead compute X̃ = ((ΠA)T (ΠA))+(ΠA)TΠB, i.e., the minimizer
of ‖ΠAX −ΠB‖. Note that computing (ΠA)T (ΠA) (given ΠA) only takes a smaller O(md2)
amount of time. We show that if Π satisfies (k,O(

√
ε))-AMM for UA, PĀB, and is also an

O(1)-subspace embedding for a certain r(A)-dimensional subspace (see Theorem 3), then

‖AX̃ −B‖2 ≤ (1 + ε)‖PAB −B‖2 + (ε/k)‖PAB −B‖2F
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where PA is the orthogonal projection onto the column space of A, PĀ = I −PA, and UA has
orthonormal columns forming a basis for the column space of A. The punchline is that if the
regression error PĀB has high actual rank but stable rank only on the order of r(A), then we
obtain multiplicative spectral norm error with Π having fewer rows. Generalized regression
is a natural extension of the case when B is a vector, and arises for example in Regularized
Least Squares Classification, where one has multiple (non-binary) labels, and for each label
one creates a column of B; see e.g. [CLL+10] for this and variations.

2. Low-rank approximation: In this problem we are given A ∈ Rn×d and an integer k ≥ 1,
and we would like to compute Ak = argminr(X)≤k ‖A − X‖. It is well known that Ak can
be obtained by truncating the SVD of A to contain only the top k singular vectors. The
standard way to use dimensionality reduction to obtain an approximate low rank approxima-
tion, introduced in [Sar06], is to let S = ΠA then compute Ã = APS . Then one returns Ãk,
the best rank-k approximation of Ã, instead of Ak (it is known Ãk can be computed more
efficiently than Ak; see [CW09, Lemma 4.3]). We show that if Π satisfies (k,O(

√
ε)-AMM for

Uk and A−Ak, and is a (1/2)-subspace embedding for the column space of Ak, then

‖Ãk −A‖2 ≤ (1 + ε)‖A−Ak‖2 + (ε/k)‖A−Ak‖2F .

The punchline is that if the stable rank of the tail A − Ak is on the same order as the
rank parameter k, then the standard algorithms from previous work for Frobenius norm
multiplicative error actually in fact also provide spectral multiplicative error.

We also explain in Section 3 how our result has already been applied in recent work on dimen-
sionality reduction for k-means clustering [CLM+15], and how our result can be used to generalize
results in [YPW15] on dimensionality reduction for nonparametric regression to extend to a larger
class of subspace embeddings Π, such as sparse subspace embeddings.

1.1 Preliminaries and notation

Note for conforming matrices AT , B each of stable rank at most r̃, Eq. (4) with k = r̃ and error
parameter ε/2 implies

‖(ΠA)T (ΠB)−ATB‖ ≤ ε‖A‖‖B‖ (5)

In other words, Eq. (4) will give us results for matrices of stable rank k similar to those we have for
matrices of rank k.

Throughout the paper we frequently use the singular value decomposition (SVD). For a matrix
A ∈ Rn×d of rank r, consider the compact SVD A = UAΣAV

T
A where UA ∈ Rn×r and VA ∈ Rd×r

each have orthonormal columns, and ΣA is diagonal with strictly positive diagonal entries (the
singular values of A). We assume (ΣA)i,i ≥ (ΣA)j,j for i < j. We let PA = UAU

T
A denote the

orthogonal projection operator onto the column space of A.
Often for a matrix A we write Ak as the best rank-k approximation to A under Frobenius or

spectral error (obtained by writing the SVD of A then setting all (ΣA)i,i to 0 for i > k). We often
denote A−Ak as Ak̄. For matrices with orthonormal columns, such as UA, (UA)k denotes the n×k
matrix formed by removing all but the first k columns of U . When A is understood from context,
we often write UΣV T instead of UAΣAV

T
A , and Uk to denote (UA)k (and Σk for (ΣA)k, etc.).
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2 Analysis of matrix multiplication for stable rank

Definition 2. Let E be a linear subspace of Rn, and let Π be an m× n matrix. Then we say Π is
an ε-subspace embedding for E if for all x ∈ E

(1− ε)‖x‖2 ≤ ‖Πx‖2 ≤ (1 + ε)‖x‖2,

or equivalently
‖(ΠU)T (ΠU)− UTU‖ ≤ ε

for a matrix U whose columns form an orthonormal basis for E.

First we record a simple lemma stating that subspace embeddings provide approximate matrix
multiplication with respect to ‖ · ‖.

Lemma 1. Let E = span{columns(A), columns(B)}, and let Π be an ε-subspace embedding for E.
Then Eq. (5) holds.

Proof. First, without loss of generality we may assume ‖A‖ = ‖B‖ = 1 since we can divide both
sides of Eq. (5) by ‖A‖ · ‖B‖. Let U be a matrix whose columns form an orthonormal basis for E.
Then note for any x, y we can write Ax = Uw,By = Uz where ‖w‖ ≤ ‖x‖, ‖z‖ ≤ ‖y‖. Then

‖(ΠA)T (ΠB)−ATB‖ = sup
‖x‖=‖y‖=1

| 〈ΠAx,ΠBy〉 − 〈Ax,By〉 |

= sup
‖w‖,‖z‖≤1

| 〈ΠUz,ΠUw〉 − 〈Uz, Uw〉 |

= ‖(ΠU)T (ΠU)− I‖
< ε

�

Lemma 1 implies that if A,B each have rank at most r, it suffices for Π to have Ω(r/ε2) rows.
In the following two subsections, we give two different analyses showing Eq. (4) can be achieved

with Π only having Ω(k/ε2) rows, independent of r.

2.1 Analysis via conditioning

Without loss of generality we henceforth assume max{‖A‖2, ‖A‖2F /k} = max{‖B‖2, ‖B‖2F /k} = 1
(so that ‖A‖2, ‖B‖2 ≤ 1 and ‖A‖2F , ‖B‖2F ≤ k).

We use Lemma 1 in our final analysis to understand the dependence of m on k. Let w,w′ each
be minimal such that ‖Aw̄‖, ‖Bw̄′‖ ≤ ε/C ′ for some sufficiently large constant C ′ (which will be set
in the proof of Theorem 1). It was shown that w,w′ = O(k/ε2) in the proof of Theorem 3.2 (i.b)
in [MZ11]. Write the SVDs Aw = UAwΣAwV

T
Aw

, Bw′ = UBw′ΣBw′V
T
Bw′

.

For 0 ≤ i ≤ log2(1/ε2) define D′i as set of all columns of UAw , UBw′ whose corresponding squared
singular values (from ΣAw ,ΣBw′ ) are at least 1/2i. Let DAw be the set of min{k,w} largest singular
vectors from UAw , and define DBw′ similarly. Define Di = D′i ∪ DAw ∪ DBw′ . Let si denote the
dimension of span(Di), and note the si are non-decreasing.

Let s̃i be si after rounding up to the nearest power of 2. Group all i with the same value of s̃i
into groups G1, G2, . . . , Glog2(1/ε2). For example if for i = 0, 1, 2, 3 the si are 3, 4, 15, 16 then the s̃i
are 4, 4, 16, 16 and G1 = {0, 1}, G2 = {2, 3}. Let vj be the common value of s̃i for i in Gj .
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Lemma 2.
∑

i si/2
i ≤ 8k.

Proof. Define s = |DAw ∪ DBw′ | ≤ 2k and let s′i denote the dimension of span(D′i). Then the
above summation is at most

∑
i(s/2

i + s′i/2
i) ≤ 4k+

∑
i s
′
i/2

i. It thus suffices to bound the second
summand by 4k.

Note that we can find a basis for D′i among the columns of UAw , UBw′ with corresponding
squared singular value at least 1/2i, so let ai+ bi = s′i, where ai is the number of columns of UAw in
the basis and bi the number of columns of UBw′ in the basis. Then by averaging, if the inequality
of the lemma statement does not hold then either

∑
i ai/2

i > 2k or
∑

i bi/2
i > 2k. Without loss of

generality assume the former.
Consider an arbitrary column of UAw , and suppose it has squared singular value in the range

[1/2i, 1/2i−1). Then it is in span(D′j) for all j ≥ i. Its contribution to
∑

i ai/2
i is therefore

1/2i + 1/2i+1 + . . . which is at most 2/2i = 1/2i−1. It follows that
∑

i ai/2
i ≤ 2k, since the squared

Frobenius norm of Aw is at most k. This is a contradiction to
∑

i ai/2
i > 2k. �

Now we prove the main theorem of this subsection.

Theorem 1. Suppose that the following conditions hold:

(1) If w+w′ ≤ k, then Π is an ε/C-subspace embedding for the subspace spanned by the columns
of Aw, Bw′. Otherwise if w+w′ > k, then for each 0 ≤ i ≤ log2(1/ε2), Π is an εi/C-subspace
embedding for span(Di′) with

εi = min

{
1

2
, ε

√
vj
k

}
where i′ is the largest i with si in Gj.

(2) ‖ΠAw̄‖, ‖ΠBw̄′‖ ≤ ε/C.

Then Eq. (4) holds as long as C is smaller than some fixed universal constant.

Proof. We would like to bound

‖(ΠA)T (ΠB)−ATB‖ ≤ ‖(ΠAw)TΠBw′ −ATwBw′‖︸ ︷︷ ︸
α

+ ‖(ΠAw̄)TΠBw′‖︸ ︷︷ ︸
β

+ ‖(ΠAw)TΠBw̄′‖︸ ︷︷ ︸
γ

+ ‖(ΠAw̄)TΠBw̄′‖︸ ︷︷ ︸
∆

+ ‖ATw̄Bw′‖︸ ︷︷ ︸
ζ

+ ‖ATwBw̄′‖︸ ︷︷ ︸
η

+ ‖ATw̄Bw̄′‖︸ ︷︷ ︸
Θ

(6)

Using ‖XY ‖ ≤ ‖X‖ · ‖Y ‖ for any conforming matrices X,Y , we see ∆ ≤ ε2/C2 by condition
(2). Furthermore by the definition of w,w′ we know ‖Aw̄‖, ‖Bw̄′‖ ≤ ε/C ′, and thus ζ + η +
Θ ≤ 2ε/C ′ + (ε/C ′)2. Note condition (1) implies that Π is a (1/2)-subspace embedding for the
subspace spanned by columns of Aw, Bw′ (by taking i maximal). Thus by both conditions we have
β, γ ≤ (ε/C)(1 + 1/2).

It only remains to bound α. If w + w′ ≤ k, then we are done by condition (1) and Lemma 1.
Thus assume w + w′ > k. Then we have

‖(ΠAw)TΠBw′ −ATwBw′‖ = sup
‖x‖=‖y‖=1

∣∣〈ΠUAwΣAwx,ΠUBw′ΣBw′y
〉
−
〈
UAwΣAwx, UBw′ΣBw′y

〉∣∣
Let x, y be any unit norm vectors. Write x = x1 + x2 + . . . + xb for b = log2(1/ε2), where
xi is the restriction of x to coordinates for which the corresponding squared singular values
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in ΣAw are in (1/2i, 1/2i−1]. Similarly define y1, . . . , yb. Then |
〈
ΠUAwΣAwx,ΠUBw′ΣBw′y

〉
−〈

UAwΣAwx, UBw′ΣBw′y
〉
| equals∣∣∣∣∣∣

b∑
i=1

b∑
j=1

〈
ΠUAwΣAwx

i,ΠUBw′ΣBw′y
j
〉
−
〈
UAwΣAwx

i, UBw′ΣBw′y
j
〉∣∣∣∣∣∣

≤
b∑
i=1

∣∣∣∣∣∣
〈

ΠUAwΣAwx
i,ΠUBw′ΣBw′

∑
j≤i

yj

〉
−

〈
UAwΣAwx

i,
∑
j≤i

UBw′ΣBw′y
j

〉∣∣∣∣∣∣
+

b∑
j=1

∣∣∣∣∣∣
〈

ΠUAwΣAw

∑
i≤j

xi,ΠUBw′ΣBw′y
j

〉
−

〈∑
i≤j

xi, yj

〉∣∣∣∣∣∣ (7)

We bound the first sum, as bounding the second is similar. Note UAwΣAwx
i, UBw′ΣBw′

∑
j≤i y

j ∈
Di. Therefore by property (1) and Lemma 1,∣∣∣∣∣
〈

ΠUAwΣAwx
i,ΠUBw′ΣBw′

∑
j≤i

yj

〉
−

〈
UAwΣAwx

i, UBw′ΣBw′

∑
j≤i

yj

〉∣∣∣∣∣ ≤ εi

C2(i−1)/2
· ‖xi‖ · ‖y‖

≤ ε

C2(i−1)/2
·
√

2si
k
· ‖xi‖ (8)

where Eq. (8) used that the corresponding v value in property (1) is at most 2si. Returning to
Eq. (7) and applying Cauchy-Schwarz and Lemma 2,

b∑
i=1

∣∣∣∣∣
〈

ΠUAwΣAwx
i,ΠUBw′ΣBw′

∑
j≤i

yj

〉
−

〈
UAwΣAwx

i,
∑
j≤i

UBw′ΣBw′y
j

〉∣∣∣∣∣ ≤
b∑
i=1

ε

C2(i−1)/2
·
√

2si
k
· ‖xi‖

≤ 2ε

C
√
k
·

(
b∑
i=1

si
2i

)1/2

·

(
b∑
i=1

‖xi‖2
)1/2

≤ 2
√

8ε

C

We thus finally have that Eq. (6) is at most (2
√

8 + 3)ε/C + +(ε/C)2 + 2ε/C ′ + (ε/C ′)2, which
is at most ε for C,C ′ sufficiently large constants. �

Applying Theorem 1:

Example 1: Let Π have O(k/ε2) rows forming an orthonormal basis for the span of the columns
of Aw, Bw′ . Property (1) is satisfied for every i in fact with εi = 0. Property (2) is also satisfied
since ‖ΠAw̄‖ ≤ ‖Π‖ · ‖Aw̄‖ ≤ ε, and similarly for bounding ‖ΠBw̄′‖.

Example 2: Let Π be 1/
√
m times a random m × n matrix with independent entries that are

subgaussian with variance 1. For example, the entries of Π may be N (0, 1/m), or uniform in
{−1/

√
m, 1/

√
m}. Let m be Θ((k + log(1/δ))/ε2). By standard results (see e.g. [CW13]), it is
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known that such a matrix is an ε-subspace embedding for a k-dimensional subspace with failure
probability δ. For property (1) of Theorem 1, if w + w′ ≤ k then we would like Π to be an ε-
subspace embedding for a subspace of dimension at most k, which holds with failure probability
δ. If w + w′ > k then we would like Π to be an εi-subspace embedding for span(Di′) for all
1 ≤ i ≤ log2(1/ε2) simultaneously. Note maxj vj ≤ 2(w + w′) = O(k/ε2), and thus maxj vj ≤ m.
Thus for a subspace under consideration Di′ for i′ ∈ Gj , we have failure probability δvj/k for our
choice of m. By construction every vj is at least k, and the vj increase at least geometrically. Thus

our total failure probability is, by a union bound,
∑

j δ
vj/k ≤

∑
j δ

2j−1
= O(δ). Property (2) of

Theorem 1 is satisfied with failure probability δ by [RV13, Theorem 3.2].

Our alternative stable rank AMM analysis in Section 2.2 easily directly applies to the SRHT and
sparse subspace embeddings, so we defer our implications for these constructions to that section.

2.2 Analysis via a moment property

Here we provide another way to obtain Eq. (4) for any Π whose subspace embedding property has
been established using the moment method, e.g. sparse subspace embeddings [MM13, NN13], dense
subgaussian matrices as analyzed in Section A.1, or even the SRHT as analyzed in Section A.2.
Our approach in this subsection is inspired by the introduction of the “JL-moment property” in
[KN14] to analyze approximate matrix multiplication with Frobenius error. The following is a
generalization of [KN14, Definition 6.1], which was only concerned with d = 1.

Definition 3. A distribution D over Rm×n has (ε, δ, d, `)-OSE moments if for all matrices U ∈
Rn×d with orthonormal columns,

E
Π∼D

∥∥(ΠU)T (ΠU)− I
∥∥` < ε` · δ

Note that this is just a special case of bounding the expectation of an arbitrary function of
‖(ΠU)T (ΠU)− I‖. The arguments below will actually apply to any nonnegative, convex, increas-
ing function of ‖(ΠU)T (ΠU)− I‖2, but we restrict to moments for simplicity of presentation. The
acronym “OSE” refers to oblivious subspace embedding, a term coined in [NN13] to refer to dis-
tributions over Π yielding a subspace embedding for any fixed subspace of a particular bounded
dimension with high probability.

We start with a simple lemma.

Lemma 3. Suppose D satisfies the (ε, δ, 2d, `)-OSE moment property and A,B are matrices with
(1) the same number of rows, and (2) sum of ranks at most 2d. Then

E
Π∼D

∥∥(ΠA)T (ΠB)−ATB
∥∥` < ε`‖A‖`‖B‖` · δ

Proof. First, we apply Lemma 1 to A and B, where U forms an orthonormal basis for the subspace
span{columns(A), columns(B)}, showing that∥∥(ΠA)T (ΠB)−ATB

∥∥ ≤ ∥∥(ΠU)T (ΠU)− I
∥∥ ‖A‖‖B‖.

Therefore

E
Π∼D

∥∥(ΠA)T (ΠB)−ATB
∥∥` ≤ E

Π∼D

∥∥(ΠU)T (ΠU)− I
∥∥` ‖A‖`‖B‖` < ε`‖A‖`‖B‖` · δ

9
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Then, just as [KN14, Theorem 6.2] showed that having OSE moments with d = 1 implies
approximate matrix multiplication with Frobenius norm error, here we show that having OSE
moments for larger d implies approximate matrix multiplication with operator norm error. Then,
as we will see below, this straightforwardly implies that many OSE constructions can be used in
this context, with their number of rows depending on stable rank and not rank.

Theorem 2. Given k, ε, δ ∈ (0, 1/2), let D be any distribution over matrices with n columns with
the (ε, δ, 2k, `)-OSE moment property for some ` ≥ 2. Then, for any A,B,

P
Π∼D

(
‖(ΠA)T (ΠB)−ATB‖ > ε

√
(‖A‖2 + ‖A‖2F /k)(‖B‖2 + ‖B‖2F /k)

)
< δ (9)

Proof. We can assume A,B each have orthogonal columns. This is since, via the full SVD, there
exist orthogonal matrices RA, RB such that ARA and BRB each have orthogonal columns. Since
neither left nor right multiplication by an orthogonal matrix changes operator norm,

‖(ΠA)T (ΠB)−ATB‖ = ‖(ΠARA)T (ΠBRB)− (ARA)TBRB‖.

Thus, we replace A by ARA and similarly for B. We may also assume the columns a1, a2, . . . of
A are sorted so that ‖ai‖2 ≥ ‖ai+1‖2 for all i. Henceforth we assume A has orthogonal columns in
this sorted order (and similarly for B, with columns bi). Now, treat A as a block matrix in which
the columns are blocked into groups of size k, and similarly for B (if the number of columns of
either A or B is not divisible by k, then pad them with all-zero columns until they are, which does
not affect the claim). Let the spectral norm of the ith block of A be si = ‖a(i−1)·k+1‖2, and for B
denote the spectral norm of the ith block as ti = ‖b(i−1)·k+1‖2. These equalities for A,B hold since
their columns are orthogonal and sorted by norm. We claim

∑
i s

2
i ≤ ‖A‖2 +‖A‖2F /k (and similarly

for
∑

i t
2
i ). To see this, let the blocks of A be A′1, . . . , A

′
q where si = ‖A′i‖. Note s2

1 = ‖A′1‖ ≤ ‖A‖.
Also, for i > 1 we have

s2
i = ‖a(i−1)·k+1‖22 ≤

1

k

∑
(i−2)·k+1≤j≤(i−1)·k

‖aj‖22 =
1

k
‖A′i−1‖2F .

Thus ∑
i>1

s2
i ≤ ‖A‖2F /k.

Define C = (ΠA)T (ΠB)−ATB. Let v{i} denote the ith block of a vector v (the k-dimensional
vector whose entries consist of entries (i− 1) · k + 1 to i · k of v), and C{i},{j} the (i, j)th block of
C, a k × k matrix (the entries in C contained in the ith block of rows and jth block of columns).

Now, ‖C‖ = sup‖x‖=‖y‖=1 x
TCy. For any such vectors x and y, we define new vectors x′ and

y′ whose coordinates correspond to entire blocks: we let x′i = ‖x{i}‖, with y′ defined analogously.
We similarly define C ′ with entries corresponding to blocks of C, where C ′i,j = ‖C{i},{j}‖. Then

xTCy ≤ x′TC ′y′, simply by bounding the contribution of each block. Thus it suffices to upper
bound ‖C ′‖, which we bound by its Frobenius norm ‖C ′‖F . Now, recalling for a random variable
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X that ‖X‖` denotes (E |X|`)1/` and using Minkowski’s inequality (that ‖ · ‖` is a norm for ` ≥ 1),

‖‖C ′‖2F ‖`/2 =

∥∥∥∥∥∥
∑
i,j

‖(ΠA′i)T (ΠB′j)−A′Ti B′j‖2
∥∥∥∥∥∥
`/2

≤
∑
i,j

‖‖(ΠA′i)T (ΠB′j)−A′Ti B′j‖2‖`/2

≤
∑
i,j

ε2s2
i t

2
j · δ2/` by Lemma 3

= ε2

(∑
i

s2
i

)
·

∑
j

t2j

 δ2/`

≤
(
ε
√

(‖A‖2 + ‖A‖2F /k)(‖B‖2 + ‖B‖2F /k)δ1/`

)2

Now, E ‖C ′‖`F = ‖‖C ′‖2F ‖
`/2
`/2, implying

P
(
‖C ′‖ > ε

√
(‖A‖2 + ‖A‖2F /k)(‖B‖2 + ‖B‖2F /k)

)
≤ P

(
‖C ′‖F > ε

√
(‖A‖2 + ‖A‖2F /k)(‖B‖2 + ‖B‖2F /k)

)
<

E ‖C ′‖`F(
ε
√

(‖A‖2 + ‖A‖2F /k)(‖B‖2 + ‖B‖2F /k)
)`

≤ δ

�

Applying Theorem 2: In Section A.1 we show that if Π has independent subgaussian entries,
then it satisfies an OSE moment property and thus the analysis in this subsection applies to show
that it suffices for such Π to have m = O((k + log(1/δ))/ε2) rows to satisfy (k, ε)-AMM with
failure probability δ. The analyses in [MM13, NN13] when combined with Theorem 2 imply that
for sparse subspace embeddings with s = 1 non-zero entry per column, one can achieve (k, ε)-
AMM with failure probability δ having m = O(k/(ε2δ)), although that guarantee was already
implied by [KN14, Theorem 6.2]. The analysis in [NN13] combined with Theorem 2 also allows
m = O(k log6(k/δ)/ε2) and s = O(log3(k/δ)/ε), and if Conjecture 14 of that work is positively
resolved (a conjecture concerning just the settings required to obtain the OSE property) one could
even set m = O((k + log(1/δ))/ε2), s = O(log(k/δ)/ε). Section A.2 shows the SRHT satisfies
an OSE moment property and thus one can set m = O(ε−2(k + log(1/(εδ))) log(k/δ)) for that
construction. Interestingly our analysis of the SRHT in Section A.2 seems to be asymptotically
tighter than any other analyses in previous work even for the basic subspace embedding property.

3 Applications

Spectral norm approximate matrix multiplication with dimension bounds depending on stable rank
has immediate applications for the analysis of generalized regression and low-rank approximation
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problems. We also point out to the reader recent applications of this result to kernelized ridge
regression [YPW15] and k-means clustering [CEM+15].

3.1 Generalized regression

Here we consider generalized regression: attempting to approximate a matrix B as AX, with A
of rank at most k. Let PA be the orthogonal projection operator to the column space of A, with
PĀ = I − P ; then the natural best approximation will satisfy

AX = PAB.

This minimizes both the Frobenius and spectral norms of AX − B. A standard approximation
algorithm for this is to replace A and B with sketches ΠA and ΠB, then solve the reduced problem
exactly (see e.g. [CW09], Theorem 3.1). This will produce

X̃ = ((ΠA)TΠA)−1(ΠA)TΠB

AX̃ = A((ΠA)TΠA)−1(ΠA)TΠB

= UA((ΠUA)TΠUA)−1(ΠUA)TΠB.

Below we give a lemma on the guarantees of the sketched solution in terms of properties of Π.

Theorem 3. If Π

1. satisfies the (k,
√
ε/8)-approximate spectral norm matrix multiplication property for UA, PĀB

2. is a (1/2)-subspace embedding for the column space of A (which is implied by Π satisfying the
spectral norm approximate matrix multiplication property for UA with itself)

then
‖AX̃ −B‖2 ≤ (1 + ε)‖PAB −B‖2 + (ε/k) · ‖PAB −B‖2F . (10)

Proof. We may write:

‖AX̃ −B‖22 = ‖UA((ΠUA)TΠUA)−1(ΠUA)TΠB −B‖2

= ‖UA((ΠUA)TΠUA)−1(ΠUA)TΠ(PAB + PĀB)− PAB − PĀB‖2

= ‖PAB + UA((ΠUA)TΠUA)−1(ΠUA)TΠPĀB − PAB − PĀB‖2

= ‖UA((ΠUA)TΠUA)−1(ΠUA)TΠPĀB − PĀB‖2.

So far, we have shown that the error depends only on PĀB and not PAB (with the third line
following from the fact that the sketched regression is exact on PAB). Now, in the last line, we
can see that the two terms lie in orthogonal column spaces (the first in the span of A, the second
orthogonal to it). For matrices X and Y with orthogonal column spans, ‖X+Y ‖2 ≤ ‖X‖2 +‖Y ‖2,
so this is at most

‖UA((ΠUA)TΠUA)−1(ΠUA)TΠPĀB‖2 + ‖PĀB‖2.

Spectral submultiplicativity then implies the first term is at most

(‖UA‖ · ‖((ΠUA)TΠUA)−1‖ · ‖(ΠUA)TΠPĀB‖)2.
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‖UA‖ is 1, since UA is orthonormal. ((ΠUA)TΠUA)−1 is at most 2, since Π is a subspace embedding
for UA. Finally, ‖(ΠUA)TΠPĀB‖ is at most√
ε/8·

√
(‖UA‖2 + ‖UA‖2F /k)(‖PĀB‖2 + ‖PĀB‖2F /k) =

√
(ε/8) · 2 · (‖PAB −B‖2 + ‖PAB −B‖2/k).

Multiplying these together, squaring, and adding the remaining ‖PĀB‖2 term gives a bound of

(1 + ε)‖PAB −B‖2 + (ε/k) · ‖PAB −B‖2F

as desired. �

3.2 Low-rank approximation

Now we apply the generalized regression result from Section 3.1 to obtain a result on low-rank
approximation: approximating a matrix A in the form ŨkΣ̃kṼ

T
k , where Ũk has only k columns

and both Ũk and Ṽk have orthonormal columns. Here, we consider a previous approach (see e.g.
[Sar06]):

1. Let S = ΠA.

2. Let PS be the orthogonal projection operator to the row space of S. Let Ã = APS .

3. Compute a singular value decomposition of Ã, and keep only the top k singular vectors.
Return the resulting low rank approximation Ãk of Ã.

It turns out computing Ãk can be done much more quickly than computing Ak; see details in
[CW09, Lemma 4.3].

Let Ak be the exact k-truncated SVD approximation of A (and thus the best rank-k approx-
imation, in the spectral and Frobenius norms), and let Uk be the top k column singular vectors,
and Ak̄ = A−Ak be the tail.

Theorem 4. If Π

1. satisfies the (k,
√
ε/8)-approximate spectral norm matrix multiplication property for Uk, Ak̄

2. is a (1/2)-subspace embedding for the column space of Uk

then
‖A− Ãk‖2 ≤ (1 + ε)‖A−Ak‖2 + (ε/k)‖A−Ak‖2F (11)

Proof. Note that this procedure chooses the best possible (in the spectral norm) rank-k approxi-
mation to A subject to the constraint of lying in the row space of S. Thus, the spectral norm error
can be no worse than the error of a specific such matrix we exhibit.

We simply choose the matrix obtained by running our generalized regression algorithm from A
onto Uk, with Π:

Uk((ΠUk)
TΠUk)

−1(ΠUk)
TΠA

This is rank-k by construction, since it is multiplied by Uk, and it lies in the row space of S = ΠA
since that is the rightmost factor. On the other hand, it is an application of the regression algorithm
to A where the optimum output is Ak (since that is the projection of A onto the space of Uk).
Plugging this into Eq. (10) gives the desired result. �

13



3.3 Kernelized ridge regression

In nonparametric regression one is given data yi = f∗(xi) + wi for i = 1, . . . , n, and the goal is to
recover a good estimate for the function f∗. Here the yi are scalars, the xi are vectors, and the wi
are independent noise, often assumed to be distributed as mean-zero gaussian with some variance
σ2. Unlike linear regression where f∗(xi) is assumed to take the form 〈β, x〉 for some vector β,
in nonparametric regression we allow f∗ to be an arbitrary function from some function space.
Naturally the goal then is to recover some f̃ from the data so that, as n grows, the probability that
f̃ is “close” to f∗ increases at some good rate.

The recent work [YPW15] considers the well studied problem of obtaining f̃ so that ‖f̃ − f∗‖2n
is small with high probability over the noise w, where one uses the definition

‖f − g‖2n =
1

n

n∑
i=1

(f(xi)− g(xi))
2.

The work [YPW15] considers the case where f∗ comes from a Hilbert space H of functions f such
that f is guaranteed to be square integrable, and the map x 7→ f(x) is a bounded linear functional.
The function f̃ is then defined to be the optimal solution to the Kernel Ridge Regression (KRR)
problem of computing

fLS = argmin
f∈H

{
1

2n

n∑
i=1

(yi − f(xi))
2 + λn · ‖f‖2H

}
(12)

for some parameter λn. It is known that any H as above can be written as the closure of the set
of all functions

g(·) =

N∑
i=1

αik(·, zi), (13)

over all α ∈ RN and vectors z1, . . . , zN for some positive semidefinite kernel function k. Further-
more, the optimal solution to Eq. (12) can be expressed as fLS =

∑n
i=1 α

LS
i ·k(·, xi) for some choice

of weight vector αLS , and it is known that ‖fLS − f∗‖n will be small with high probability, over
the randomness in w, if λn is chosen appropriately (see [YPW15] for background references and
precise statements).

After rewriting Eq. (12) using Eq. (13) and defining a matrix K with Ki,j = k(xi, xj), one
arrives at a reformulation for KRR of computing

αLS = argmin
α∈Rn

{
1

2n
αTK2α− 1

n
αTKy + λnα

TKα

}
=

(
1

n
K2 + 2λnK

)−1

· 1

n
Ky,

which can be computed in O(n3) time. The work [YPW15] then focuses on speeding this up, by
instead computing a solution to the lower-dimensional problem

α̃LS = argmin
α∈Rm

{
1

2n
αTΠK2ΠTα− 1

n
αTΠKy + λnα

TΠKΠTα

}
=

(
1

n
ΠK2ΠT + 2λnΠKΠT

)−1

· 1
n

ΠKy

and then returning as f̃ the function specified by the weight vector α̃ = ΠT α̃LS . Note that once
various matrix products are formed (where the running time complexity depends on the Π being
used), one only needs to invert an m ×m matrix thus taking O(m3) time. They then prove that
‖f̃ − f∗‖n is small with high probability as long as Π satisfies two deterministic conditions (see the
proof of Lemma 2 [YPW15, Section 4.1.2], specifically equation (26) in that work):
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• Π is a (1/2)-subspace embedding for a particular low-dimensional subspace

• ‖ΠB‖ = O(‖B‖) for a particular matrix B of low stable rank (B is UD2 in [YPW15]). Note

‖ΠB‖ = ‖(ΠB)TΠB‖1/2 ≤
(
‖(ΠB)TΠB −BTB‖+ ‖BTB‖

)1/2 ≤ ‖(ΠB)TΠB−BTB‖1/2+‖B‖,

and thus it suffices for Π to provide the approximate matrix multiplication property for the
product BTB, where B has low stable rank.

The first bullet simply requires a subspace embedding in the standard sense, and for the second
bullet [YPW15] avoided AMM by obtaining a bound on ‖ΠB‖ directly by their own analyses for
gaussian and the SRHT (in the gaussian case, it also follows from [RV13, Theorem 3.2]). Our
result thus provides a unifying analysis which works for a larger and general class of Π, including
for example sparse subspace embeddings.

3.4 k-means clustering

In the works [BZMD15, CEM+15], the authors considered dimensionality reduction methods for
k-means clustering. Recall in k-means clustering one is given n points x1, . . . , xn ∈ Rd, as well as
an integer k ≥ 1, and the goal is to find k points y1, . . . , yk ∈ Rd minimizing

n∑
i=1

k
min
j=1
‖xi − yj‖22.

That is, the n points can be partitioned arbitrarily into k clusters, then a “cluster center” should
be assigned to each cluster so as to minimize sums of squared Euclidean distances of each of the n
points to their cluster centers. It is a standard fact that once a partition P = {P1, . . . , Pk} of the
n points into clusters is fixed, the optimal cluster centers to choose are the centroids of the points
in each of the k partitions, i.e. yj = (1/|Pj |) ·

∑
i∈Pj

xi.

One key observation common to both of the works [BZMD15, CEM+15] is that k-means clus-
tering is is closely related to the problem of low-rank approximation. More specifically, given a
partition P = {P1, . . . , Pk}, define the n× k matrix XP by

(XP)i,j =


1√
|Pj |

, if i ∈ Pj

0, otherwise

Let A ∈ Rn×d have rows x1, . . . , xn. Then the k-means problem can be rewritten as computing

argminP‖A−XPXT
PA‖2F

where P ranges over all partitions of {1, . . . , n} into k sets. It is easy to verify that the non-zero
columns of XP are orthonormal, so XPX

T
P is the orthogonal projection onto the column space

of XP . Thus if one defines S as the set of all rank at most k orthogonal projections obtained as
XPX

T
P for some k-partition P, then the above can be rewritten as the constrained rank-k projection

problem of computing
argminP∈S‖(I − P )A‖2F . (14)
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One can verify this by hand, since the rows of A are the points xi, and the ith row of PA for
P = XPX

T
P is the centroid of the points in i’s partition in P.

The work [CEM+15] showed that if S is any subset of projections of rank at most k (henceforth
rank-k projections) and Π ∈ Rm×d satisfies certain technical conditions to be divulged soon, then
if P̃ ∈ S satisfies

‖(I − P̃ )AΠT ‖2F ≤ γ ·minP∈S‖(I − P )AΠT ‖2F , (15)

then

‖(I − P̃ )A‖2F ≤
(1 + ε)

(1− ε)
· γ ·minP∈S‖(I − P )A‖2F . (16)

One set of sufficient conditions for Π is as follows (see [CEM+15, Lemma 10]). Let Ak denote
the best rank-k approximation to A and let Ak̄ = A − Ak. Define Z ∈ Rd×r for r = 2k by
Z = Vr, i.e. the top r right singular vectors of A are the columns of Z. Define B1 = ZT and

B2 =
√
k

‖Ak̄‖F
· (A−AZZT ). Define B ∈ R(n+r)×d as having B1 as its first r rows and B2 as its lower

n rows. Then [CEM+15, Lemma 10] states that Eq. (15) implies Eq. (16) as long as

‖(ΠBT )T (ΠBT )−BBT ‖ < ε, (17)

and
∣∣‖ΠB2‖2F − ‖B2‖2F

∣∣ ≤ εk (18)

One can easily check ‖B‖2 = 1 and ‖B‖2F ≤ 3k, so the stable rank r̃(B) is at most 3k. Thus
Eq. (17) is implied by the (3k, ε/2)-AMM property for BT , BT , and our results apply to show that
Π can be taken to have m = O((k+log(1/δ))/ε2) rows to have success probability 1−δ for Eq. (17).
Obtaining Eq. (18) is much simpler and can be derived from the JL moment property (see the proof
of [KN14, Theorem 6.2]).

Without our results on stable-rank AMM provided in this current work, [CEM+15] gave a
different analysis, avoiding [CEM+15, Lemma 10], which required Π to have m = Θ(k · log(1/δ)/ε2)
rows (note the product between k and log(1/δ) instead of the sum).

4 Stable rank and row selection

As well as random projections, approximate matrix multiplication (and subspace embeddings) by
row selection are also common in algorithms. This corresponds to setting Π to a diagonal matrix S
with relatively few nonzero entries. Unlike random projections, there are no oblivious distributions
of such matrices S with universal guarantees. Instead, S must be determined (either randomly or
deterministically) from the matrices being embedded.

There are two particularly algorithmically useful methods for obtaining such S. The first
is importance sampling: independent random sampling of the rows, but with nonuniform sam-
pling probabilities. This is analyzed using matrix Chernoff bounds [AW02], and for the case of
k-dimensional subspace embedding or approximate matrix multiplication of rank-k matrices, it can
produce O(k(log k)/ε2) samples [SS11]. The second method is the deterministic selection method
given in [BSS12], often called “BSS”, choosing only O(k/ε2) rows. This still runs in polynomial
time, but requires many relatively expensive linear algebra steps and thus is slower in general.

The matrix Chernoff methods can be extended to the stable-rank case, making even the log
factor depend only on the stable rank, using “intrinsic dimension” variants of the bounds as pre-
sented in Chapter 7 of [Tro15]. Specifically, Theorem 6.3.1 of that work can be applied with each
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n summands each equal to 1
n

(
1
pi
aTi bi −ATB

)
, where ai is the ith row of A, and i is random with

the probability of choosing a particular row i equal to

pi =
‖ai‖2 + ‖bi‖2∑
j ‖aj‖2 + ‖bj‖2

We here give an extension of BSS that covers low stable rank matrices as well.

Theorem 5. Given an n by d matrix A such that ‖A‖2 ≤ 1 and ‖A‖2F ≤ k, and an ε ∈ (0, 1),
there exists a diagonal matrix S with O(k/ε2) nonzero entries such that

‖(SA)T (SA)−ATA‖ ≤ ε

Such an S can be computed by a polynomial-time algorithm.

When ATA is the identity, this is just the original BSS result. It is also stronger than Theorem
3.3 of [KMST10], implying it when A is the combination of the rows

√
N/T · vi from that theorem

statement with an extra column containing the costs, and a constant ε. The techniques in that
paper, on the other hand, can prove a result comparable to Theorem 5, but with the row count
scaling as k/ε3 rather than k/ε2.

Proof. The proof closely follows the original proof of BSS. However, for simplicity, and because
the tight constants are not needed for most applications, we do not include [BSS12, Claim 3.6] and
careful parameter-setting.

At each step, the algorithm will maintain a partial approximation Z = (SA)T (SA) (the matrix
“A” in [BSS12]), with S beginning as 0. Additionally, we keep track of upper and lower “walls” Xu

and Xl; in the original BSS these are just multiples of the identity. The final S will be returned by
the algorithm (rescaled by a constant so that the average of the upper and lower walls is ATA).

We will maintain the invariants

tr(A(Xu − Z)−1AT ) ≤ 1 (19)

tr(A(Z −Xl)
−1AT ) ≤ 1. (20)

These are the so-called upper and lower potentials from BSS. We also require Xu ≺ Z ≺ Xl; recall
M ≺ M ′ means that M ′ −M is positive definite. Note that unlike [BSS12], here we do not apply
a change of variables making ATA the identity (to avoid confusion, since that would change the
Frobenius norm). This is the reason for the slightly more complicated form of the potentials.

In the original BSS, Xu and Xl were always scalar multiples of the identity (here, without the
change of variables, that would correspond to always being multiples of ATA). [BSS12] thus simply
represented them with scalars. Like BSS, we will increase Xu and Xl by multiples of ATA–however,
the key difference from BSS is that they are initialized to multiples of the identity, rather than
ATA. In particular, we may initialize Xu to kI and Xl to −kI. This is still good enough to get
the spectral norm bounds we require here (as opposed to the stronger multiplicative approximation
guaranteed by BSS).

We will have two scalar values, δu and δl, depending only on ε; they will be set later. One step
consists of

1. Choose a row ai from A and a positive scalar t, and add taia
T
i to Z (via increasing the i

component of S).
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2. Add δuA
TA to Xu and δlA

TA to Xl.

We will show that with suitable values of δu and δl, for any Z obeying the invariants there always
exists a choice of i and t such that the invariants will still be true after the step is complete. This
corresponds to Lemmas 3.3 through 3.5 of BSS.

For convenience, we define, at a given step, the matrix functions of y

Mu(y) = ((Xu + yATA)− Z)−1

Ml(y) = (Z − (Xl + yATA))−1.

The upper barrier value, after making a step of taia
T
i and increasing Xu, is

tr(A((Xu + δuA
TA)− (Z + taia

T
i ))−1AT ).

Applying the Sherman-Morrison formula, and cyclicity of trace, to the rank-1 update taia
T
i , this

can be rewritten as

tr(AMu(δu)AT ) +
taTi Mu(δu)ATAMu(δu)ai

1− taTi Mu(δu)ai
.

Since the function f(y) = tr(AMu(y)AT ) is a convex function of y with derivative

f ′(y) = − tr(AMu(y)ATAMu(y)AT ),

we have f(δu)− f(0) ≤ −δu tr(AMu(δu)ATAMu(δu)AT ). Then the difference between the barrier
before and after the step is at most

taTi Mu(δu)ATAMu(δu)ai

1− taTi Mu(δu)ai
− δu tr(AMu(δu)ATAMu(δu)AT ).

Constraining this to be no greater than zero, rewriting in terms of 1
t and pulling it out gives

1

t
≥ aTi Mu(δu)ATAMu(δu)ai
δu tr(AMu(δu)ATAMu(δu)AT )

+ aTi Mu(δu)ai.

Furthermore, as long as 1
t is at least this, Z will remain below Xu, since the barrier must approach

infinity as t approaches the smallest value passing Xu.
For the lower barrier value after the step, we get

tr(A((Z + taia
T
i )− (Xl + δlA

TA))−1AT ).

Again, applying Sherman-Morrison rewrites it as

tr(AMl(δl)A
T )− taTi Ml(δl)A

TAMl(δl)ai

1 + taTi Ml(δl)ai
.

Again, due to convexity the increase in the barrier from raising Xl is at most δl times the local
derivative. The difference in the barrier after the step is then at most

− taTi Ml(δl)A
TAMl(δl)ai

1 + tMl(δl)ai
+ δl tr(AMl(δl)A

TAMl(δl)A
T ).
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This is not greater than zero as long as

1

t
≤ aTi Ml(δl)A

TAMl(δl)ai
δl tr(AMl(δl)ATAMl(δl)AT )

− aTi Ml(δl)ai.

There is some value of t that works for ai as long as the lower bound for 1
t is no larger than

the upper bound. To show that there is at least one choice of i for which this holds, we look at the
sum of all the lower bounds and compare to the sum of all the upper bounds. Summing the former
over all i gets

tr(AMu(δu)ATAMu(δu)AT )

δu tr(AMu(δu)ATAMu(δu)AT )
+ tr(AMu(δu)AT )

and the latter gets
tr(AMl(δl)A

TAMl(δl)A
T )

δl tr(AMl(δl)ATAMl(δl)AT )
− tr(AMl(δl)A

T ).

Finally, note that

tr(AMu(δu)AT ) = tr(A((Xu + δuA
TA)− Z)−1AT ) ≤ tr(A(Xu − Z)−1AT ) ≤ 1

and the lower barrier implies Z −Xl � ATA, implying that as long as δl ≤ 1
2 ,

tr(AMl(δl)A
T ) = tr(A(Z − (Xl + δlA

TA))−1AT ) ≤ 2 tr(A(Z −Xl)
−1AT ) ≤ 2.

Thus, we can always make a step as long as δu and δl are set so that

1

δu
+ 1 ≤ 1

δl
− 2

and δl ≤ 1
2 . This is satisfied by

δu = ε+ 2ε2

δl = ε− 2ε2.

Before the first step, Xu and Xl can be initialized as kI and −kI, respectively. If the algorithm
is then run for k

ε2
steps, we have:

Xu =
k

ε
ATA+ 2kATA+ kI

� k

ε
ATA+ 3kI

Xl =
k

ε
ATA− 2kATA− kI

� k

ε
ATA− 3kI.

ε
kXu and ε

kXl both end up within 3εI of ATA, so ε
kZ (from

√
ε
kS) satisfies the requirements of

the output for 3ε (one can simply apply this argument for ε/3). Furthermore, all the computa-
tions required to verify the preservation of invariants and compute explicit ts can be performed in
polynomial time. �

This obtains more general AMM as a corollary:
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Corollary 1. Given two matrices A and B, each with n rows, and an ε ∈ (0, 1), there exists a
diagonal matrix S with O(k/ε2) nonzero entries satisfying the (k, ε)-AMM property for A, B. Such
an S can be computed by a polynomial-time algorithm.

Proof. Apply Theorem 5 to a matrix X consisting of the columns of A√
2 max(‖A‖2,‖A‖F /

√
k)

appended

to the columns of B√
2 max(‖B‖2,‖B‖F /

√
k)

, and use the resulting S.

Note that X satisfies the conditions of that theorem, since concatenating the sets of columns at
most adds the squares of their spectral and Frobenius norms. (SA)T (SB)−ATB is a submatrix of
2 max(‖A‖2, ‖A‖F /

√
k) max(‖B‖2, ‖B‖F /

√
k)((SX)T (SX)−XTX), so its spectral norm is upper

bounded by the spectral norm of that matrix, which in turn is bounded by the guarantee of
Theorem 5. �
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Appendix

A OSE moment property

In the following two subsections we show the OSE moment property for both subgaussian matrices
and the SRHT.

A.1 Subgaussian matrices

In this section, we show the OSE moment property for distributions satisfying a JL condition,
namely the JL moment property. This includes matrices with i.i.d. entries that are mean zero and
subgaussian with variance 1/m.

Definition 4. [KMN11] Let D be a distribution over Rm×n. We say D has the (ε, δ, p)-JL moment
property if for all x ∈ Rn of unit norm,

E
Π∼D
|‖Πx‖2 − 1|p < εp · δ.

The following theorem follows from the proof of Lemma 8 in the full version of [CW13]. We
give a different proof here inspired by the proof of [FR13, Theorem 9.9], which is slightly shorter
and more self-contained. A weaker version appears in [Sar06, Lemma 10], where the size bound on
X is (Cd/ε)d for a constant C ≥ 1 instead of simply Cd.

Theorem 6. Let U ∈ Rn×d with orthonormal columns be arbitrary. Then there exists a set X ⊂ Rn,
|X| ≤ 9d, each of norm at most 1 such that

‖(ΠU)T (ΠU)− I‖ ≤ 2 · sup
x∈X
|‖Πx‖2 − 1|
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Proof. We will show that if supx∈X |‖Πx‖2 − 1| < ε/2 then ‖(ΠU)T (ΠU) − I‖ < ε, where ε > 0
is some positive real. Define A = (ΠU)T (ΠU)− I. Since A is symmetric,

‖A‖ = sup
‖x‖=1

|xTAx| = sup
‖x‖=1

| 〈Ax, x〉 |

Let Tγ be a finite γ-net of `d2, i.e. Tγ ⊂ `d2 and for every x ∈ Rd of unit norm there exists a y ∈ Tγ
such that ‖x− y‖2 ≤ γ. As we will see soon, there exists such a Tγ of size at most (1 + 2/γ)d. We
will show that if Π satisfies the JL condition on T ′ = {Uy : y ∈ T1/4} with error ε/2, then ‖A‖ < ε;
that is, (1− ε/2)‖x‖22 ≤ ‖Πx‖22 ≤ (1 + ε/2)‖x‖22 for all x ∈ T ′.

Let x be a unit norm vector that achieves the sup above, i.e. ‖A‖ = | 〈Ax, x〉 |. Then, letting y
be the closest element of Tγ to x,

‖A‖ = | 〈Ax, x〉 |
= | 〈Ay, y〉+ 〈A(x+ y), x− y〉 |

≤ ε

2
+ ‖A‖ · ‖x+ y‖ · ‖x− y‖

≤ ε

2
+ 2γ‖A‖.

Rearranging gives ‖A‖ ≤ ε/(2(1− 2γ)), which is ε for γ = 1/4.
Now we must show that we can take |Tγ | ≤ (1 + 2/γ)d. The following is a standard cover-

ing/packing argument for bounding metric entropy. Imagine packing as many radius-(γ/2) `2 balls
as possible into Rd, centered at points with at most unit norm and such that these balls do not
intersect each other. Then these balls all fit into a radius-(1 + γ/2) `2 ball centered at the origin,
and thus the number of balls we have packed is at most the ratio of the volume of a (1 + γ/2) ball
to the volume of a γ/2 ball, which is ((1 + γ/2)/(γ/2))d = (1 + 2/γ)d. Now, take those maximally
packed radius-(γ/2) balls and double each of their radii to be radius γ. Then every point in the
unit ball is contained in at least one of these balls by the triangle inequality, which is exactly the
property we wanted from Tγ (Tγ is just the centers of these balls). To see why every point is in
at least one such ball, if some x ∈ Rd of unit norm is not contained in any doubled ball then a
γ/2-ball about x would be disjoint from our maximally packed γ/2 balls, a contradiction. �

Lemma 4. If D satisfies the (ε, δ, p)-JL moment property, then D satisfies the (2ε, 9dδ, d, p)-OSE
moment property

Proof. By Theorem 6, there exists a subset X ⊂ Rn of at most 9d points such that

E ‖(ΠU)T (ΠU)− I‖p ≤ 2p · E sup
x∈X
|‖Πx‖2 − 1|p

≤ 2p ·
∑
x∈X

E |‖Πx‖2 − 1|p

≤ 2p · 9d · εp · δ
= (2ε)p · 9dδ.

�

It is known that if D is a distribution over Rm×n with m = Ω(log(1/δ)/ε2) and for Π ∼ D,
the entries of Π are independent subgaussians with mean zero and variance 1/m, then D has the
(ε/2, δ,Θ(log(1/δ)))-JL moment property [KMN11]. Thus such a matrix has the (ε, δ, d,Θ(d +
log(1/δ)))-OSE moment property for δ < 2−d by Lemma 4.
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A.2 Subsampled Randomized Hadamard Transform (SRHT)

Recall the SRHT is the m×n matrix Π = (1/
√
m) ·SHD for n a power of 2 where D has diagonal

entries α1, . . . , αn that are independent and uniform in {−1, 1}, H is the unnormalized Hadamard

transform with Hi,j = (−1)〈i,j〉 (treating i, j as elements of the vector space Flog2 n
2 ), and S is a

sampling matrix. That is, the rows of S are independent, and each row has a 1 in a uniformly
random location and zeroes elsewhere. A similar construction is where S is an n × n diagonal
matrix with Si,i = ηi being independent Bernoulli random variables each of expectation m/n (so
that, in expectation, S selects m rows from HD). We will here show the moment property for
this latter variant since it makes the notation a tad cleaner, though the analysis we present holds
essentially unmodified for the former variant as well.

Our analysis below implies that the SRHT provides an ε-subspace embedding for d-dimensional
subspaces with failure probability δ for m = O(ε−2(d+ log(1/(εδ))) log(d/δ)). This is an improve-
ment over analyses we have found in previous works. The analysis in [Tro11] only considers constant
ε and δ = O(1/d) and for these settings achieves m = O((d+log n) log d), which is still slightly worse
than our bound for this setting of ε, δ (our bound removes the log n and achieves any 1/ poly(d)
failure probability with the same m). The analysis in [LDFU13] only allows failure probabilities
greater than n/ed. They show failure probability δ + n/ed is achieved for m = O(d log(d/δ)/ε2),
which is also implied by our result if m ≤ n (which is certainly the case in applications for the
SRHT to be useful, since otherwise one could use the n× n identity matrix as a subspace embed-
ding). The reason for these differences is that previous works operate by showing HDU has small
row norms with high probability over D; since there are n rows, some logarithmic dependence on
n shows up in a union bound. After this conditioning, one then shows that S works. Our analysis
does not do any such conditioning at all. Interestingly, such a conditioning approach was done even
for the case d = 1 [AC09]. As we see below, this approach is slightly lossy (essentially the logn
terms that appear from the conditioning approach can be very slightly improved to logm).

Our main motivation in re-analyzing the SRHT was not to improve the bounds, but simply to
give an analysis demonstrating that the SRHT satisfies the OSE moment property. The fact that
our moment based analysis below (very slightly) improved m was a fortunate accident. Before we
present our proof of the OSE moment property for the SRHT, we state a theorem we will use. For a
random matrix M , we henceforth use ‖M‖p to denote (E ‖M‖pSp

)1/p where ‖M‖Sp is the Schatten-p
norm, i.e. the `p norm of the singular values of M .

Theorem 7 (Non-commutative Khintchine inequality [LP86, LPP91]). Let X1, . . . , Xn be fixed real
matrices and σ1, . . . , σn be independent Rademachers. Then

∀p ≥ 1, ‖
∑
i

σiXi‖p .
√
p ·max

{
‖(
∑
i

XiX
T
i )1/2‖Sp , ‖(

∑
i

XT
i Xi)

1/2‖Sp

}
.

We will also make use of the Hanson-Wright inequality.

Theorem 8 (Hanson-Wright [HW71]). For (σi) independent Rademachers and A symmetric,

∀p ≥ 1, ‖σTAσ − EσTAσ‖p .
√
p · ‖A‖F + p · ‖A‖.

Note that for scalar random variables X, it holds that ‖X‖p ≤ ‖X‖q whenever p < q. This is
not true for the random matrix norm ‖M‖p = (E ‖M‖pSp

)1/p (as a simple counter-example, consider

M being the identity matrix with probability 1). We use the following lemma instead.
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Lemma 5. Let M be a random matrix of rank at most r. Also suppose 1 ≤ p < q <∞. Then

‖M‖p ≤ r1/p−1/q · ‖M‖q

Proof. Consider the scalar random variable α distributed as follows:

α =

{
uniformly random singular value of M, w.p. rank(M)/r

0, otherwise

Then ‖α‖p ≤ ‖α‖q, i.e. (r−1 EM ‖M‖pSp
)1/p ≤ (r−1 EM ‖M‖qSq

)1/q. The lemma follows. �

We now present our main analysis of this subsection.

Theorem 9. The SRHT satisfies the (ε, δ, d, p)-moment property for p = log(d/δ) as long as
m & ε−2(d log(d/δ) + log(d/δ) log(m/δ)) ' ε−2(d+ log(1/(εδ))) log(d/δ).

Proof. For a fixed U ∈ Rn×d with orthonormal columns, we would like to bound

E
α,η
‖ 1

m
(SHDU)T (SHDU)− I‖p.

Since p ≥ log d we have

‖ 1

m
(SHDU)T (SHDU)− I‖ ' ‖ 1

m
(SHDU)T (SHDU)− I‖Sp (21)

by Hölder’s inequality. Also, let z1, . . . , zn be the rows of HDU , as column vectors, so that

1

m
(SHDU)T (SHDU) =

1

m

n∑
i=1

ηiziz
T
i . (22)

Note also
∑

i ziz
T
i = (HDU)THDU = n · I for any D, so the identity matrix is the expectation,

over η, of the right hand side of Eq. (22) for any D. Thus we are left wanting to bound

‖ 1

m

∑
i

ηiziz
T
i − E

η′

1

m

∑
i

η′iziz
T
i ‖p

where the η′i are identically distributed as the ηi but independent of them. Below we use ‖f(X)‖Lp(X)

to denote (EX |f(X)|p)1/p. Thus for (σi) independent Rademachers,

‖ 1

m

∑
i

ηiziz
T
i −I‖p = ‖ 1

m

∑
i

ηiziz
T
i − E

η′

1

m

∑
i

η′iziz
T
i ‖p (23)

= ‖‖ 1

m

∑
i

ηiziz
T
i − E

η′

1

m

∑
i

η′iziz
T
i ‖Lp(η)‖Lp(α)

≤ 1

m
‖‖
∑
i

ηiziz
T
i −

∑
i

η′iziz
T
i ‖Lp(η,η′)‖Lp(α) (Jensen’s inequality)

=
1

m
· ‖
∑
i

(ηi − η′i)zizTi ‖p
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=
1

m
· ‖
∑
i

σi(ηi − η′i)zizTi ‖p (equal in distribution)

≤ 2

m
· ‖
∑
i

σiηiziz
T
i ‖p (triangle inequality)

.
√
p

m
· ‖(
∑
i

ηi‖zi‖22 · zizTi )1/2‖p (Theorem 7)

=

√
p

m
· ‖
∑
i

ηi‖zi‖22 · zizTi ‖
1/2
p/2

≤
√
d1/p ·

√
p

m
· ‖
∑
i

ηi‖zi‖22 · zizTi ‖1/2p (Lemma 5)

.
√
p

m
· ‖(max

i
ηi‖zi‖22) · (

∑
i

ηiziz
T
i )‖1/2p (since d1/p ≤ 2)

=

√
p

m
·

(
E
α,η

((max
i
ηi‖zi‖22)p/2 · ‖

∑
i

ηiziz
T
i ‖

p/2
Sp

)

)1/p

≤
√
p

m
·

(
( E
α,η

max
i
ηi‖zi‖22)p)1/2 · ( E

α,η
‖
∑
i

ηiziz
T
i ‖

p
Sp

)1/2

)1/p

(Cauchy-Schwarz)

=

√
p

m
· ‖max

i
ηi‖zi‖22‖1/2p · ‖

∑
i

ηiziz
T
i ‖1/2p

≤
√
p

m
· ‖max

i
ηi‖zi‖22‖1/2p · (d1/p + ‖ 1

m

∑
i

ηiziz
T
i − I‖1/2p ) (triangle inequality)

(24)

By choice of p ≥ log d, note 1 ≤ d1/p ≤ 2. Letting Q denote ‖ 1
m

∑
i ηiziz

T
i − I‖

1/2
p and R denote√

p/m · ‖maxi ηi‖zi‖22‖
1/2
p , combining Eq. (23) and Eq. (24) we have

Q2 . R+RQ

implying that for some fixed constant C > 0, we have Q2−CRQ−CR ≤ 0. This implies that Q is
at most the larger root of the associated quadratic equation, i.e. Q . max{

√
R,R}, or equivalently

‖ 1

m

∑
i

ηiziz
T
i − I‖p . max{R,R2} (25)

It only remains to bound R, which in turn amounts to bounding ‖maxi ηi‖zi‖22‖
1/2
p . Define

q = max{p, logm}, and note ‖ · ‖p ≤ ‖ · ‖q. Then

‖max
i
ηi‖zi‖22‖q =

(
E
α,η

max
i
ηqi (‖zi‖

2
2)q
)1/q

≤

(
E
α,η

∑
i

ηqi (‖zi‖
2
2)q

)1/q
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=

(∑
i

E
α,η
ηqi (‖zi‖

2
2)q

)1/q

≤
(
n ·max

i
E
α,η
ηqi (‖zi‖

2
2)q
)1/q

=

(
n ·max

i
(E
η
ηqi ) · (Eα(‖zi‖22)q)

)1/q

(α, η independent)

=

(
m ·max

i
E
α

(‖zi‖22)q)

)1/q

≤ 2 ·max
i
‖‖zi‖22‖q (m1/q ≤ 2 by choice of q)

= 2 ·max
i
‖αT ŨiŨTi α‖q

= 2 ·max
i

(d+ ‖αT ŨiŨTi α− EαT ŨiŨTi α‖q) (triangle inequality) (26)

where Ũi is the matrix with (Ũi)k,j = Hi,k · Uk,j . Of particular importance for us is the identity
ŨTi Ũi = I. Then by Eq. (26) and Theorem 8,

‖max
i
ηi‖zi‖22‖q . d+

√
q · ‖ŨiŨTi ‖F + q · ‖ŨiŨTi ‖

= d+
√
qd+ q

≤ 3

2
· (d+ q) (AM-GM inequality)

so that

R .

√
p

m
·
√
d+ q,

which when combined with Eq. (25) gives

‖ 1

m

∑
i

ηiziz
T
i − I‖p .

√
p

m
· (d+ q) +

p

m
· (d+ q).

Thus the OSE moment property is satisfied by our choices of m, p in the theorem statement. �
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