
University of the Virgin Islands, St. Thomas January 9, 2015
Algorithms and Programming for High Schoolers

Lab 2

Exercise 1: In my high school, students were given letter grades based on their numerical scores.
Here is the table of which numerical scores correspond to which letter grades:

Score Grade

99-100 A+

96-98 A

93-95 A-

90-92 B+

87-89 B

84-86 B-

81-83 C+

78-80 C

75-77 C-

70-74 D

0-69 F

Write a function convertScoreToGrade(n) which takes an int numerical score n and returns
a string corresponding to the letter grade in my high school.

Example solution:

def convertScoreToGrade(n):

if n>=99:

return ‘A+’

elif n>=96:

return ‘A’

elif n>=93:

return ‘A-’

elif n>=90:

return ‘B+’

elif n>=87:

return ‘B’

elif n>=84:

return ‘B-’

elif n>=81:

return ‘C+’

elif n>=78:

return ‘C’

elif n>=75:

return ‘C-’

elif n>=70:

return ‘D’

1

else:

return ‘F’

Exercise 2: Write a function listOfWords(s) which takes as input a sentence s and outputs a list
containing all the words. We’ll assume that the sentence s is just a list of words each separated by
a single space. So, for example, listOfWords(’How are you today’) should return the list [‘How’,
‘are’, ‘you’, ‘today’].

Example solution:

def listOfWords(s):

cur = ‘’

ret = []

for c in s:

if c==‘ ’:

ret += [cur]

cur = ‘’

else:

cur += c

ret += [cur]

return ret

Exercise 3: Recall, an integer is prime if it is larger than 1 and it has no divisors other than 1 and
itself. Write a function isPrime(n) which returns True if n is prime, and returns False otherwise.
Then, write a function listOfPrimes(n) which returns a list of all primes, in order, between 2
and n — you might want to call the function isPrime from within listOfPrimes. Notice that if
you try to run listOfPrimes on a large number, it will take a long time. Is there a way to write
isPrime so that listOfPrimes(n) takes only a few seconds to return its result when n is 1000000?

Example solution:

def isPrime(n):

if n<2:

return False

for x in xrange(2,n):

if x*x > n:

break

if n%x==0:

return False

return True

def listOfPrimes(n):

ret = []

for x in xrange(2, n+1):

if isPrime(x):

2

ret += [x]

return ret

Notice that we can break in isPrime if x*x>n, since if a number n has a divisor other than 1 or
itself, then one of its divisors must be less than

√
n. By breaking early, the loop only runs

√
n

times instead of n times, so it runs faster and we can handle larger numbers.

Exercise 4: Let’s call an integer well-spaced if when you write down its prime factorization, you
don’t need to use two adjacent primes. For example, 10 is well-spaced since 10 = 2 · 5, and 2, 5
are not adjacent primes since the prime 3 is in between them. However, 6 is not well-spaced, since
6 = 2 · 3, and 2, 3 are adjacent primes, and neither is 154 = 2 · 7 · 11, since 7, 11 are adjacent
primes. Any prime number itself is of course also well-spaced. Write a function wellSpaced(n)
which returns True if n is well-spaced, and returns False otherwise. Is 147525307 well-spaced?
How about 147914243?

Example solution:

def wellSpaced(n):

primeList = listOfPrimes(n+1)

for i in xrange(len(primeList)-1):

if n%primeList[i]==0 and n%primeList[i+1]==0:

return False

return True

The above solution is correct, but it takes way too long on the numbers 147525307 and 147914243
given above. The problem is that our loop to check whether n is prime takes about

√
n steps, so

listOfPrimes(n) takes roughly n ·
√
n steps. When n = 147525307, n ·

√
n is a lot of steps so it

takes our computer a long time.
We can derive a faster solution by noticing that whenever we have n = a · b, one of a, b must be

at most
√
n. Thus, if a < b are adjacent primes that multiply to n, then a ≤

√
n, and either b ≤

√
n

or it is the smallest prime larger than
√
n. This observation leads to a much faster implementation.

Faster example solution:

def wellSpaced(n):

First calculate the floor of the square root of n

squareRoot = 0

while squareRoot*squareRoot <= n:

squareRoot += 1

squareRoot -= 1

Get the list of primes up to the square root

primeList = listOfPrimes(squareRoot)

Add on the very next prime after the square root

lastPrime = primeList[len(primeList) - 1] + 1

3

while not isPrime(lastPrime):

lastPrime += 1

primeList += [lastPrime]

Now check for adjacent prime divisors

for i in xrange(len(primeList)-1):

if n%primeList[i]==0 and n%primeList[i+1]==0:

return False

return True

The above code is now much faster, and we find that neither of the given numbers is well-spaced.

Exercise 5: An integer is said to be a palindrome if its digits are the same forward and backwards
(not including leading zeroes). For example, 12321 is a palindrome, as is 5. 1231 on the other hand
is not a palindrome, and neither is 50 (remember we are not including leading zeroes). Write a
function isPalindrome(n) which returns True if n is a palindrome and False otherwise.

Example solution:

def isPalindrome(n):

s = str(n)

for i in xrange(len(s)):

if s[i] != s[len(s)-i-1]:

return False

return True

Exercise 6: Write a function nextPalindrome(n) which returns the smallest integer m larger
than n such that m is a palindrome. For example, nextPalindrome(9) should return 11, and
nextPalindrome(12) should return 22.

Example solution:

def nextPalindrome(n):

x = n+1

while not isPalindrome(x):

x += 1

return x

Faster example solution: Let us first define a function to reverse strings.

def reverse(s):

t = ‘’

for i in xrange(len(s)):

t += s[len(s) - i - 1]

return t

4

The following implementation of nextPalindrome is much faster than the last, since in the
previous implementation we might have to iterate in the while loop a long time before reaching
the next palindrome. The implementation below, rather than iterating to find the next palindrome,
just figures out what the next palindrome has to look like then creates it.

def nextPalindrome(n):

if n<9:

return n+1

elif n==9:

return 11

s = str(n)

t = s[0:len(s)/2]

trev = reverse(t)

if int(t + trev) > n:

return int(t + trev)

if len(s)%2==1 and int(t + s[len(s)/2] + trev)>n:

return int(t + s[len(s)/2] + trev)

if len(s)%2==1 and s[len(s)/2]!=‘9’:

return int(t + str(int(s[len(s)/2]) + 1) + trev)

else:

tInc = str(int(t)+1)

tIncRev = reverse(tInc)

if len(tInc)==len(t):

if len(s)%2==0:

return int(tInc + tIncRev)

else:

return int(tInc + ‘0’ + tIncRev)

else:

ret = ‘1’

for i in xrange(len(s)-1):

ret += ‘0’

ret += ‘1’

return int(ret)

5

