
University of the Virgin Islands, St. Thomas January 14, 2015
Algorithms and Programming for High Schoolers

Lab 5

Exercise 1: Implement Karatsuba’s algorithm in Python.

Example solution: It’s a bit easier to implement if you work with a string of digits or list of
digits, so that you can easily append the necessary amount of zeroes at various points, and also
easily take the first and second halves of digits.

a and b here are the numbers to be multiplied, given as strings

def recurse(a, b):

pad a and b with 0s in the beginning so they are the same length

if len(a) > len(b):

b = ‘0’*(len(a)-len(b)) + b

if len(b) > len(a):

a = ‘0’*(len(b)-len(a)) + a

n = len(a)

if n == 1:

return str(int(a)*int(b))

the code is easier if n is even

if n%2 == 1:

n += 1

a = ‘0’ + a

b = ‘0’ + b

ah is the first half of digits of a, and al is the second half,

and similarly for bh and bl

ah = a[:n/2]

al = a[n/2:]

bh = b[:n/2]

bl = b[n/2:]

do the three recursions of karatsuba’s algorithm

x = recurse(ah, bh)

y = recurse(al, bl)

z = recurse(str(int(ah)+int(al)), str(int(bh)+int(bl)))

substract off the extra stuff we don’t need from z

z = str(int(z) - int(x) - int(y))

x += ‘0’*n

z += ‘0’*(n/2)

return str(int(x)+int(y)+int(z))

1

def karatsuba(a, b):

return int(recurse(str(a), str(b)))

Exercise 2: Implement a function fibonacci(n) for computing the nth Fibonacci number, using
repeated squaring.

Example solution:

def matrixMultiply(A, B):

n = len(A)

m = len(A[0])

p = len(B[0])

C = []

for i in xrange(n):

C += [[0]*p]

for i in xrange(n):

for j in xrange(p):

for k in xrange(m):

C[i][j] += A[i][k]*B[k][j]

return C

def matrixPower(A, n):

if n==0:

return the identity matrix I, which has all 1s on the diagonal

and 0s everywhere else. I*T = T for any matrix T

I = []

for i in xrange(len(A)):

I += [[0]*len(A)]

for i in xrange(len(A)):

I[i][i] = 1

return I

B = matrixPower(A, n/2)

B = matrixMultiply(B, B)

if n%2 == 1:

B = matrixMultiply(B, A)

return B

def fibonacci(n):

A = [[1,1],[1,0]]

B = matrixMultiply(matrixPower(A, n), [[1],[1]])

return B[1][0]

2

Exercise 3: Recall the Trionacci sequence defined in lab 3:

Ti =

{
1 if i = 0 or i = 1 or i = 2

Ti−1 + Ti−2 + Ti−3 otherwise

Implement a function trionacci(n) which returns the nth Trionacci number. Your function
should only require O(log2 n) integer multiplications.

Example solution: The solution is essentially the same as for Fibonacci, except that our matrix
is different. We use the matrix

A =

 1 1 1
1 0 0
0 1 0


Then

A ·

 Ti

Ti−1

Ti−2

 =

 Ti + Ti−1 + Ti−2

Ti

Ti−1

 =

 Ti+1

Ti

Ti−1

 ,

so what we want is the last entry in the product

An ·

 T2

T1

T0

 = An ·

 1
1
1

 .

def trionacci(n):

A = [[1,1,1],[1,0,0],[0,1,0]]

B = matrixMultiply(matrixPower(A, n), [[1],[1],[1]])

return B[2][0]

3

