Predicting Crowd Work Quality under Monetary Interventions

Ming Yin, Yiling Chen

HCOMP-16 • Austin, TX • October 31, 2016
Modeling Worker Performance in Crowdsourcing

Correct in 50% of the tasks!

Accuracy / Error Rate
(e.g. Whitehill et. al. 2009)

Temporal Pattern
(e.g. Jung, Park & Lease. 2014)

More and more accurate over time!
Modeling Worker Performance under Interventions

How to capture worker performance under interventions?

- Money
- Communication or Feedback
- Break
A Prediction Perspective

Training Data

Learn Model

Predict

Categorical time series prediction *with exogenous inputs*!
A Prediction Perspective

Training Data

Learn → Model → Predict

Focus on *monetary intervention* in this talk!
An Empirical Comparison

Supervised Learning Models
- Random Forests
- SVM
- Neural Network

Autoregressive Models
- DARX
 \[y_i^t = I_t y_i^{t-D_t} + (1 - I_t) e_t \]

Markov Models
- Controlled MC
- IOHMM

\[z_i^t = c + \sum_{j=1}^{P} \phi_j z_i^{t-j} + \sum_{j=0}^{q-1} \theta_j a_i^{t-j} + e_i^t \]
\[Pr(y_i^t = 1) = \frac{1}{1 + e^{-z_i^t}} \]
Supervised Learning Models: Features

Within a history window of size L:
- Historical Intervention Levels
- Historical Performance
- Historical Intervention Changes
- Historical Performance Changes

Current Intervention Level
Average Intervention Level
Average Performance

Random Forests, SVM, Neural Network
Autoregressive Models: Incorporating Exogenous Inputs

DARX: Extended from DAR [Jacobs and Lewis 1983]

\[z_t = c + \phi z_{t-1} + \epsilon_t + \theta a_t \]

LARX: Extended from LAR [Jung, Park and Lease 2014]
Markov Models: Application

Controlled Markov Chain

Action: Intervention
State: Worker Performance

Input-Output Hidden Markov Model

Inputs: Intervention
Outputs: Worker Performance
Evaluation Datasets

Word Puzzle
- 300 workers
- 9 tasks in a session
- 37% bonus tasks
- 76.8% high-quality

Butterfly Classification
- 220 workers
- 10 tasks in a session
- 29% bonus tasks
- 55.5% high-quality

Proofreading
- 80 workers
- 10 tasks in a session
- 49% bonus tasks
- 63.4% high-quality
It is necessary to model the impact of monetary interventions on worker performance.

The random forest model outperforms other prediction models! (Best model for 7 out of 9 comparisons!)

Predictive features: average performance; average intervention level.
More Realistic Scenarios

Training Data

Learn Model

Predict

Limited Training Data

Limited Ground Truth

vs.

Model

Predict

Learn

Limited

Limited

Ground

Truth
The random forest model is relatively robust against limited training data.
The random forest model (and the IOHMM model) is relatively robust against limited access to ground truth.
Summary

The random forest model can be a good model to use in practice to predict crowd work quality under monetary interventions, because of its:

- Accurate predictions with high confidence across different types of tasks
- Robustness against limited training data
- Robustness against limited ground truth
Future Directions

Training Data

Dynamic Placement of Monetary Intervention

Yin & Chen, IJCAI-15 (IOHMM)

Learn

Model

Predict

Maximize Utility
Future Directions

Dynamic Placement of Monetary Intervention

Performance Modeling under Other Interventions

Yin & Chen, IJCAI-15 (IOHMM)

Training Data

Learn Model

Predict

Maximize Utility
Thank you!