Dynamic Enforcement of Dynamic Policies

Pablo Buiras and Bart van Delft

Chalmers University of Technology, Sweden

Abstract. LIO is a dynamic information-flow control system embedded
in Haskell that uses a runtime monitor to enforce noninterference. The
monitor is written as a library, requiring no changes to the runtime. We
propose to extend LIO with a state component, allowing us to enforce
not only noninterference but also information-flow policies that change
while the program is running.

Enforcement mechanisms for information flows in software frequently aim
to achieve the noninterference security property. This property states that no
change in sensitive (secret) inputs to the system should affect non-sensitive (pub-
lic) outputs, which captures the idea that secrets should not be leaked.

LIO [3] is a Haskell runtime monitor that enforces noninterference. Over
time, LIO has been successfully extended to prevent information leaks via certain
covert timing channels. The security condition has, however, not yet been gen-
eralised, even though it is generally accepted that noninterference is too strong
a requirement for most applications.

There are several canonical examples of applications that necessarily violate
noninterference. A password checker needs to allow for some interference from the
password database to the user to signal whether the login attempt was successful
or not. Information purchase applications require noninterference on confidential
information to hold only until the price for that information has been paid. Yet
other applications might need to introduce additional noninterference constraints
over time, for example on the information flow from strategic documents to a
manager who is demoted while the system is running.

To allow for the enforcement of such dynamic policies, we propose to extend
LIO with a state component which records that part of the system state relevant
to determine the current policy that needs to be enforced. In the following we
briefly summarise how LIO works and how we propose to extend it. For now we
consider only the original sequential LIO library, leaving support for extensions
such as concurrency to future work.

Labelled 10 LIO leverages Haskell’s monadic encoding of side-effects to provide
security. In Haskell, input/output operations are provided by the 10 monad, an
abstract data type used to express sequencing of effectful computations. The
LI0 monad provided by the LIO library is intended to be used as a replacement
for this type. It provides a collection of operations similar to 10, but enriched
with security checks that prevent unwanted information flows. LI0 computations

2 Pablo Buiras, Bart van Delft

carry the type LI0 1 a, where 1 is an arbitrary security lattice of labels specified
by the code using LIO and a is the type of the result of the computation.

The LIO library uses a floating-label approach to the dynamic enforcement of
information-flow policies, which is based on mandatory access control. The LI0
monad uses its state to keep track of a current label, Ley. This label represents,
in a coarse-grained way, the least upper bound over the labels on which the
current computation depends. All the (I/O) operations provided by LIO take
care to appropriately validate and adjust this label. Consider a standard two-
point lattice (Low T High) and a computation starting with L., being Low.
When this computation reads a file labelled High, L, is raised to High and
writing to Low files is prohibited by the L10 monad from that moment onwards,
independent of what would actually be written to these files.

Stateful LIO We propose for LIO computations to carry the type LI0 s 1 a,
where s is the type of the state component for LI0 to use in its enforcement.
That is, when writing to a file with label [we now check whether L¢,, T, I. The
LIO0 library exports functionality to update this state s, so the outcome of this
check for the same L.y, and [can vary depending on the current value of s.

As the relation between labels can now change arbitrarily over time, the labels
lose their lattice structure and a least upper bound can no longer be computed.
Therefore L., is modified to contain the set of labels of all the information on
which the current computation depends. When performing a sensitive operation

like writing to a file, the = check is performed for each label in L., individually.

Encodings We can now present various policy change mechanisms as restricted
interfaces to Stateful LIO. Clearly, we can regain the original noninterference by
simply not exporting the operations to update the state component.

We can export an explicit declassify function, by using a boolean value as
the state component and having the ordering among policies as usual except that
High Ty Low holds but High C,se Low does not. An operation p can now be
declassified by calling declassify p which sets the state to true, performs p and
then resets the state to false before returning.

We can also encode policy languages that allow for much more policy change,
such as Paralocks [1] (in which the state component becomes a set of open locks)
or non-disclosure policies [2] (where the state tracks the set of flow-relations).

References

1. Niklas Broberg and David Sands. Paralocks — Role-Based Information Flow Control
and Beyond. In POPL’10, Proceedings of the 37th Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, 2010.

2. Ana Almeida Matos and Gerard Boudol. On declassification and the non-disclosure
policy. In Computer Security Foundations, 2005. CSFW-18 2005. 18th IEEE Work-
shop, pages 226-240. IEEE, 2005.

3. Deian Stefan, Alejandro Russo, John C. Mitchell, and David Magziéres. Flexible
Dynamic Information Flow Control in Haskell. In Proceedings of the 4th ACM
symposium on Haskell, Haskell '11, pages 95-106, New York, NY, USA, 2011. ACM.

