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Abstract
We present theinfinite exponential family Harmonium model(iEFH), which is a
bipartite latent feature model with an unbounded number of latent units. We use
the Indian Buffet Process as a prior to enforce that the expected number of la-
tent states to be finite with probability one. To the best of our knowledge, iEFH
presents a first successful attempt towards utilizing the benefits of Bayesian non-
parametrics to learn the structures of an undirected latentvariable model.

1 Introduction
One challenging problem with learning both supervised and unsupervised latent feature models is
to specify the number of latent units, which is a model selection problem. The development of
Bayesian nonparametric methods that can automatically resolve the number of features from an in-
finite number of candidates a priori has the potential to bypass the model selection problem [2].
However, very few attempts have been made towards learning nonparametric undirected Markov
networks such as harmoniums that have nice properties of fast inference due to the weak assumption
that observations and response variables are conditionally independent given a set of latent variables.
In this paper, we propose theinfinite exponential family Harmonium(iEFH), which is to our knowl-
edge the first attempt to learn infinite undirected latent variable models. We apply the nonparametric
Indian Buffet Process (IBP) prior on an unbounded number of latent units but expect to select a finite
subset when trained with a finite number of examples. We also extend iEFH to multi-view iEFH
for incorporating heterogeneous data and to infinite max-margin Harmonium (iMMH) for achieving
more accurate prediction results (e.g., classification accuracy). Finally, we extensively evaluate the
proposed model on two real datasets and compare with severalbaseline methods.

2 Infinite Exponential Family Harmoniums
The Model: Figure 1 (a) shows the unsupervised iEFH. The joint distribution is defined as:
p(v, {xd, zd}) = p(v)

∏
d p(zd|v)p(xd|zd) ∝ p(v)

∏
d p(zd|v) exp{α

⊤
xd − 1

2
x
⊤
dxd + β⊤

zd +

x
⊤
d Wzd}. LetZ denote the randomD×K binary matrix, whereD denotes the number of observa-

tions andK(→ ∞) denotes the number of latent features. Please refer to [3] for real-valued latent
feature case. Each binary elementzdk = 1 if featurek is possessed by observationd, and 0 other-
wise. Letπk ∈ (0, 1) be a parameter associated with each column of the binary matrix Z. Given
πk, zdk is sampled independently from a Bernoulli distribution, that is∀d, zdk ∼ Bernoulli(πk).
For developing a variational method to learn iEFH, the parametersπ = {π1, π2, . . . , πK} are
generated by a stick-breaking process [3]:π1 = v1, and πk = vkπk−1 =

∏k

i=1
vi,, where

vi ∼ Beta(α, 1). Then, the prior distribution isp(Z,v) = p(v)p(Z|v) = p(v)
∏

d p(zd|v) and
p(zd|v) =

∏
k p(zdk|v) =

∏
k Bernoulli(πk).

Optimization with Contrastive Divergence: To avoid the intractable normalization factor, we de-
velop an efficient contrastive divergence inference method[4][1] and use the following objective to
approximate the negative log-likelihood

L(Θ, q0, q1) , KL(q0(v, {xd, zd})‖p(v, {xd, zd}))−KL(q1(v, {xd, zd})‖p(v, {xd, zd}))

where Θ = (W, α, β) is the model parameters,KL(q, p) is the KL-divergence of vari-
ational distribution q (q0 or q1) and model distributionp. q0 is defined with x and
z clamped to the observed values andq1 is defined with all the variables free. By
using IBP prior, the joint distributionp(v, {xd, zd}) of the single-view iEFH model is
p(v, {xd, zd}) ∝ p(v)

∏

d
p(zd|v) exp{α

⊤
xd −

1

2
x
⊤
d xd + β⊤

zd + x
⊤
d Wzd}, we update each varia-

tional distribution under the mean field assumption. Each ofthe factored distribution has the
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Figure 1:(a) iEFH using the stick-breaking construction of IBP prior; classification accuracy on (b) TRECVID
2003, (c) 13-animal Flickr image datasets.

following form: q(xdn) = Normal(xdn; Eq[xdn]); q(zdk) = Bernoulli(zdk; νdk); q(vk) =
Beta(vk; γk1, γk2). For the variational parametersν andγ, we need to evaluate the terms:

Eq[log p(v)] =
∑

k

Eq[log p(vk)] = (α− 1)
∑

k

Eq [log vk] + c

Eq[log p(zd|v)] =
∑

k

Eq[log p(zdk|v)] =
∑

k

{

νdk

k
∑

j=1

Eq[log vj ] + (1− νdk)Eq[log(1−
k
∏

j=1

vj)]
}

,

whereEq[log vk] = ψ(γk1)− ψ(γk1 + γk2) andψ is the digamma function.c = K(log Γ(α+1)−
log Γ(α)) = K logα is a constant. Then the mean-field update equation forEq[Z] = ν is defined
as: νdk = 1/{1+exp{τ1−τ2− (βk+Eq[xd]

⊤
W.k)}}, whereτ1 = Eq[log(1 −

∏k

j=1
vj)], and

τ2 =
∑k

j=1
Eq[log vj ]]. We use the multinomial bound [2] whenk > 1 to computeτ1. The update

equation forγ has the same form as in [2].

After we achieveq0 and q1 with contrastive divergence, parameter learning can be done by op-
timizing the approximate objective functionL(Θ, q0, q1) using gradient descent. Let∆E[·] =
Eq1 [·]− Eq0 [·], then the gradients of model parametersΘ are:

∇αn
L =

∑

d

∆E[xdn], ∇βk
L =

∑

d

∆E[zdk], ∇Wnk
L =

∑

d

∆E[xdnzdk].

Note that the sparseness of the model depends on the non-zeroterms of the latent features Eq[z],
which is influenced by the IBP prior. Due to space limit, derivations for multi-view iEFH and max-
margin iEFH (iMMH) are deferred to longer version of the paper.

3 Experiments and Discussions
We have presented an infinite exponential family Harmonium (iEFH) model. Now, we provide sev-
eral experiments to evaluate the proposed model on two real-valued dataset consisting of multi-view
features, including TRECVID 2003 and 13-animal Flickr image [1]. We compare the iMMH, iEFH
with the supervised harmonium (MMH) [1] on text feature, color feature and multi-view features
respectively. Classification accuracy is showed in Fig. 1(b) and Fig. 1(c). iMMH performs consis-
tently comparable with (or even better than) MMH whose number of latent features is determined by
the model selection procedure, and iMMH consistently outperforms iEFH which uses unsupervised
maximum likelihood estimation. We also analyze the sensitivity of the infinite Harmonium models
with respect to the hyper-parameters (e.g.,α) in the longer version of the paper.
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