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Abstract
We present thénfinite exponential family Harmonium mod@tFH), which is a
bipartite latent feature model with an unbounded numbeaiefrit units. We use
the Indian Buffet Process as a prior to enforce that the @gdetumber of la-
tent states to be finite with probability one. To the best afimowledge, iEFH
presents a first successful attempt towards utilizing theefiks of Bayesian non-
parametrics to learn the structures of an undirected latarable model.

1 Introduction

One challenging problem with learning both supervised amlpervised latent feature models is
to specify the number of latent units, which is a model s@ecproblem. The development of
Bayesian nonparametric methods that can automaticalyuehe number of features from an in-
finite number of candidates a priori has the potential to bgpthe model selection problem [2].
However, very few attempts have been made towards learmingarametric undirected Markov
networks such as harmoniums that have nice propertiestahfasence due to the weak assumption
that observations and response variables are condityand#pendent given a set of latent variables.
In this paper, we propose tlirginite exponential family HarmoniuffEFH), which is to our knowl-
edge the first attempt to learn infinite undirected lateniadde models. We apply the nonparametric
Indian Buffet Process (IBP) prior on an unbounded numbeatefit units but expect to select a finite
subset when trained with a finite number of examples. We altend iEFH to multi-view iEFH
for incorporating heterogeneous data and to infinite marxgmadarmonium (iMMH) for achieving
more accurate prediction results (e.g., classificatiomi@ay). Finally, we extensively evaluate the
proposed model on two real datasets and compare with sédageline methods.

2 Infinite Exponential Family Harmoniums

The Model: Figure 1 (a) shows the unsupervised iEFH. The joint distiim is defined as:
p(v, {x4,2a}) = p(v) [1,p(2alv)p(xal2a) < p(v) 1, p(2alv) exp{axq — $xjxa + B 74 +
x}Wzd}. Let Z denote the rando® x K binary matrix, whereéD denotes the number of observa-
tions andK (— oo) denotes the number of latent features. Please refer to {3¢&d-valued latent
feature case. Each binary elemegt = 1 if featurek is possessed by observatiénand O other-
wise. Letr;, € (0,1) be a parameter associated with each column of the binanpniatrGiven
Tk, 24k 1S Sampled independently from a Bernoulli distributiorattis Vd, z4; ~ Bernoulli(my).
For developing a variational method to learn iEFH, the patensw = {m,7m2,..., 7k} are
generated by a stick-breaking process [3}; = vy, andm, = vpmp—1 = Hlevi,, where
v; ~ Beta(a,1). Then, the prior distribution is(Z,v) = p(v)p(Z|v) = p(v)]],p(z4|v) and
p(zalv) =11, p(zax|v) = [[, Bernoulli(my).

Optimization with Contrastive Divergence: To avoid the intractable normalization factor, we de-
velop an efficient contrastive divergence inference mefétid] and use the following objective to
approximate the negative log-likelihood

‘C(@’ q0, ql) = KL(qO(Vv {xd’ zd})Hp(Vv {xd’ zd})) - KL(ql (V’ {xd’ zd})Hp(Vv {xdv Zd}))

where ® = (W, q,[) is the model parameterd{L(q,p) is the KL-divergence of vari-
ational distributiong (¢o or ¢;) and model distributionp. ¢ is defined with x and

z clamped to the observed values amg is defined with all the variables free. By
using IBP prior, the joint distributionp(v, {x4,24}) of the single-view IEFH model is
p(v,{xa,2a}) < p(v) [, p(za|v) exp{o x4 — +x1%x4 + B 24 +x; Wz4}, We update each varia-
tional distribution under the mean field assumption. Eachhef factored distribution has the
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Figure 1:(a) iEFH using the stick-breaking construction of IBP pridassification accuracy on (b) TRECVID
2003, (c) 13-animal Flickr image datasets.

following form: ¢(z4n) = Normal(zan; Eqlzan]); ¢(zax) = Bernoulli(zax;var); q(ve) =
Beta(vk; vr1,7x2). For the variational parametersand-y, we need to evaluate the terms:

Eqllogp(v)] = >  Eqllogp(vk)] = (a — 1) Y Eqflogv] + ¢
k k

E,flog p(zalV)] = Y Eqllog p(zaclv)] = Y- {va > Eqllog ;] + (1 — var)Eqlog(1 = [T v)] .
k j=1

k j=1

whereE, [log vi] = ¥(vk1) — ¥ (7e1 + Yr2) @andy is the digamma functiore = K (logT'(a+1) —
logT'(«)) = K loga is a constant. Then the mean-field update equatioftffZ) = v is defined

as: vag, = 1/{1+exp{m —7m2— (Bx +E4[xa] "W x)}}, wherer; = E,[log(1 — H?Zl v;)], and
Ty = Z’;Zl E,[logv;]]. We use the multinomial bound [2] whén> 1 to computer;. The update
equation fory has the same form as in [2].

After we achievegy and g; with contrastive divergence, parameter learning can bes dynop-
timizing the approximate objective functiofi(©, qo,¢1) using gradient descent. L&E[] =
E,, [] — Eg [, then the gradients of model paramet@rare:

Vanﬁ = Z AE[CCdn], Vﬁkﬁ = Z AE[de], ankL = Z AE[wandk].
d d d

Note that the sparseness of the model depends on the noterer® of the latent features Eq|z],
which is influenced by the IBP prior. Due to space limit, daftions for multi-view iEFH and max-
margin iEFH (iMMH) are deferred to longer version of the pape

3 Experiments and Discussions

We have presented an infinite exponential family HarmoniigRKl) model. Now, we provide sev-
eral experiments to evaluate the proposed model on twovedaéd dataset consisting of multi-view
features, including TRECVID 2003 and 13-animal Flickr iredd]. We compare the iMMH, iEFH
with the supervised harmonium (MMH) [1] on text feature,ardleature and multi-view features
respectively. Classification accuracy is showed in Fig) a¢ld Fig. 1(c). iIMMH performs consis-
tently comparable with (or even better than) MMH whose nunalbtatent features is determined by
the model selection procedure, and iIMMH consistently adigpens iEFH which uses unsupervised
maximum likelihood estimation. We also analyze the sansitof the infinite Harmonium models
with respect to the hyper-parameters (exd.in the longer version of the paper.
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