1 Vector Spaces

- Reading: Gallian Ch. 19
- Today’s main message: linear algebra (as in Math 21) can be done over any field, and most of the results you’re familiar with from the case of \(\mathbb{R} \) or \(\mathbb{C} \) carry over.
- Def of vector space.
- Examples:
 - \(\mathbb{F}^n \)
 - \(\mathbb{F}[x] \)
 - Any ring containing \(F \)
 - \(\mathbb{F}[x]/\langle p(x) \rangle \)
 - \(\mathbb{C} \) a vector space over \(\mathbb{R} \)
- Def of linear (in)dependence, span, basis.
- Examples in \(\mathbb{F}^n \):
 - \((1,0,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,0,0,\ldots,1)\) is a basis for \(\mathbb{F}^n \)
 - \((1,1,0),(1,0,1),(0,1,1)\) is a basis for \(\mathbb{F}^3 \) iff \(F \) has characteristic 2
- Def: The dimension of a vector space \(V \) over \(F \) is the size of the largest set of linearly independent vectors in \(V \). (different than Gallian, but we’ll show it to be equivalent)
 - A measure of size that makes sense even for infinite sets.
- Prop: every finite-dimensional vector space has a basis consisting of \(\dim(V) \) vectors. Later we’ll see that all bases have exactly \(\dim(V) \) vectors.
- Examples:
 - \(\mathbb{F}^n \) has dimension \(n \)
 - \(\mathbb{F}[x] \) has infinite dimension (\(1, x, x^2, x^3, \ldots \) are linearly independent)
 - \(\mathbb{F}[x]/\langle p(x) \rangle \) has dimension \(\deg(p) \) (basis is (the cosets of) \(1, x, x^2, \ldots, x^{\deg(p)-1} \)).
 - \(\mathbb{C} \) has dimension 2 over \(\mathbb{R} \).
• **Proof:** Let v_1, \ldots, v_k be the largest set of linearly independent vectors in V (so $k = \dim(V)$). To show that this is a basis, we need to show that it spans V. Let w be any vector in V. Since v_1, \ldots, v_k, w has more than $\dim(V)$ vectors, this set must be linearly dependent, i.e. there exists constants $c_1, \ldots, c_k, d \in F$, not all zero, such that $c_1 v_1 + \cdots + c_k v_k + dw = 0$. The linear independence of v_1, \ldots, v_k implies that $d \neq 0$. Thus, we can write $w = (c_1/d_1)v_1 + \cdots + (c_k/d_k)v_k$. So every vector in V is in the span of v_1, \ldots, v_k.

• **Corollaries:**
 - if E is a finite field and F is a subfield of E, then $|E| = |F|^n$ for some $n \in \mathbb{N}$. (Much stronger than Lagrange, which only says $|F|$ divides $|E|$.)
 - if E is a finite field of characteristic p, then $|E| = p^n$ for some $n \in \mathbb{N}$.

• **Def (vector-space homomorphisms):** Let V and W be two vector spaces over F. $f : V \to W$ is a linear map if for every $x, y \in V$ and $c \in F$, we have $f(x + y) = f(x) + f(y)$ (i.e. f is a group homomorphism) and $f(cx) = cf(x)$. f is an isomorphism if f is also a bijection. If there is an isomorphism between V and W, we say that they are isomorphic and write $V \cong W$.

• **Prop:** Every n-dimensional vector space V over F is isomorphic to F^n.

• **Proof:** Let v_1, \ldots, v_n be a basis for V.
 Then an isomorphism from F^n to V is given by: $(c_1, \ldots, c_n) \mapsto \sum_i c_i v_i$. Injective because of linear independence (which says the kernel is $\{0\}$), surjective because (v_1, \ldots, v_n) span.

• **Matrices:** A linear map $f : F^n \to F^m$ can be described uniquely by an $m \times n$ matrix M with entries from F.
 - $M_{ij} = f(e_j)_i$, where $e_j = (000\cdots010\cdots00)$ has a 1 in the j'th position.
 - For $v = (v_1, \ldots, v_n) \in F^n$, $f(v)_i = f(\sum_j v_j e_j)_i = \sum_j v_j f(e_j)_i = \sum_i M_{ij} v_j = (M v)_i$, where $M v$ is matrix-vector product.
 - Matrix multiplication \leftrightarrow composition of linear maps.
 - If $n = m$, then f is an isomorphism \leftrightarrow det(M) $\neq 0$.
 - Solving $M v = w$ for v (when given M and $w \in F^m$) is equivalent to solving a linear system with m variables and n unknowns.

• **Thm:** if $f : V \to W$ is a linear map, then $\dim(\ker(f)) + \dim(\operatorname{im}(f)) = \dim(V)$.

• When F finite, this says $|V| = |F|^\dim(V) = |F|^\dim(\ker(f)) \cdot |F|^\dim(\operatorname{im}(f)) = |\ker(f)| \cdot |\operatorname{im}(f)|$, just like for group homomorphisms!

• **Corollaries:**
 - $F^n \not\cong F^m$ if $m \neq n$.
 - All bases of a vector space have the same size.
 - A homogenous linear system $M v = 0$ for $v \in F^n$ given $m \times n$ matrix M always has a nonzero solution if $n > m$ (more variables than unknowns).
• **Computational issues:** For $n \times n$ matrices over F,

- Matrix multiplication can be done with $O(n^3)$ operations in F using the standard algorithm.
- The determinant and inverse, and solving a linear system $Mv = w$ can be done using $O(n^3)$ operations in F using Gaussian elimination. (For infinite fields, need to worry about the size of the numbers, or accuracy if doing approximate arithmetic. No such problem in finite fields.)
- Asymptotically fastest known algorithms run in time $O(n^{2.376})$. Whether time $O(n^2)$ is possible is a long-standing open problem.

2 Application to Extension Fields

- Reading: parts of Gallian Ch. 21

- **Def:** E is an *extension field* of F if F is a subfield of E. The *degree of E over F* is the dimension of E as a vector space over F, and is denoted $[E : F]$. E is a *finite extension* if $[E : F]$ is finite.

- **Examples:**
 - $[\mathbb{C} : \mathbb{R}] = 2$
 - $[\mathbb{R} : \mathbb{Q}] = \infty$ (not obvious)
 - $[\mathbb{F}[x]/\langle p(x) \rangle : F] = \deg(p)$.

- **Thm 21.5:** If K is a finite extension of E, and E is a finite extension of F, then $[K : F] = [K : E][E : F]$.

- **Proof:**