1 Orbits and Stabilizers

- Reading: Gallian Chapter 7
- Defs of $\text{stab}_G(s)$, $\text{orb}_G(s)$ for $G \leq \text{Sym}(S)$ and $s \in S$.

- Orbit-Stabilizer Theorem (Thm. 7.3)
 Proof:
 - For $\varphi, \psi \in G$, $\varphi(s) = \psi(s)$ iff $\varphi\text{stab}_G(s) = \psi\text{stab}_G(s)$.
 - Thus $|\text{orb}_G(s)| = [G : \text{stab}_G(s)]$.

- Example: Symmetries (a.k.a. automorphisms) of graph with edges $\{1, 3\}$, $\{2, 4\}$, $\{3, 4\}$, $\{3, 5\}$, $\{4, 6\}$.

2 External Direct Products

- Reading: Gallian Ch. 8
- Definition. More common to write $G_1 \times G_2$ instead of Gallian’s $G_1 \oplus G_2$.

- Examples:
 - \mathbb{R}^n
 - \mathbb{C}
 - $\mathbb{Z}_3 \times \mathbb{Z}_5$
 - \mathbb{R}^*
 - $\mathbb{C}^* \text{ vs. } \mathbb{R}^* \times \mathbb{R}^*$
 - $\mathbb{Z}_2^n \text{ vs. } \mathbb{Z}_{2^n}$
Chinese Remainder Theorems: Let m, n be integers such that $\gcd(m, n) = 1$.

1. The map $x \mapsto (x \mod m, x \mod n)$ is a bijection from \mathbb{Z}_{mn} to $\mathbb{Z}_m \times \mathbb{Z}_n$. (“Numbers smaller than mn are uniquely determined by their residues modulo m and n.”)

2. $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$.

3. $\mathbb{Z}_{mn}^* \cong \mathbb{Z}_m^* \times \mathbb{Z}_n^*$.

Proof:

1. Inverse: $(y, z) \mapsto ay + bz \mod mn$ for integers a, b such that $a \equiv 1 \mod m$, $b \equiv 0 \mod m$, $a \equiv 0 \mod n$, $b \equiv 1 \mod n$. How to find a, b?

2. $((x + y) \mod mn) \mod m = (x + y) \mod m = x \mod m + y \mod m$, and similarly $((x + y) \mod mn) \mod n = x \mod n + y \mod n$.

3. Similar.

Examples: \mathbb{Z}_{15} and \mathbb{Z}_{15}^*.

Can understand \mathbb{Z}_N and \mathbb{Z}_N^* well given the prime factorization of $N = p_1^{e_1} \cdots p_k^{e_k}$.

- $\mathbb{Z}_N \cong \mathbb{Z}_{p_1^{e_1}} \times \cdots \times \mathbb{Z}_{p_k^{e_k}}$.

- $\mathbb{Z}_N^* \cong \mathbb{Z}_{p_1^{e_1}}^* \times \cdots \times \mathbb{Z}_{p_k^{e_k}}^*$

- Fact: For odd prime p, \mathbb{Z}_p^* is always cyclic, \mathbb{Z}_{2e} is cyclic if $e = 1, 2$ and is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2e-2}$ otherwise.

- Example: \mathbb{Z}_{56}^*.

But factorization seems difficult (no fast algorithms known)!

- Many cryptographic algorithms (e.g. RSA) capitalize on the fact it seems difficult to take advantage of the structure of \mathbb{Z}_N^* without knowing the factorization of N.

Classification of Abelian Groups (Gallian Ch. 11): Every finite abelian group is an external direct product of cyclic groups.